Energy Release and Particle Acceleration in Flares: Summary and Future Prospects

RHESSI measurements relevant to the fundamental processes of energy release and particle acceleration in flares are summarized. RHESSI’s precise measurements of hard X-ray continuum spectra enable model-independent deconvolution to obtain the parent electron spectrum. Taking into account the effects of albedo, these show that the low energy cut-off to the electron power-law spectrum is typically ≲tens of keV, confirming that the accelerated electrons contain a large fraction of the energy released in flares. RHESSI has detected a high coronal hard X-ray source that is filled with accelerated electrons whose energy density is comparable to the magnetic-field energy density. This suggests an efficient conversion of energy, previously stored in the magnetic field, into the bulk acceleration of electrons. A new, collisionless (Hall) magnetic reconnection process has been identified through theory and simulations, and directly observed in space and in the laboratory; it should occur in the solar corona as well, with a reconnection rate fast enough for the energy release in flares. The reconnection process could result in the formation of multiple elongated magnetic islands, that then collapse to bulk-accelerate the electrons, rapidly enough to produce the observed hard X-ray emissions. RHESSI’s pioneering γ-ray line imaging of energetic ions, revealing footpoints straddling a flare loop arcade, has provided strong evidence that ion acceleration is also related to magnetic reconnection. Flare particle acceleration is shown to have a close relationship to impulsive Solar Energetic Particle (SEP) events observed in the interplanetary medium, and also to both fast coronal mass ejections and gradual SEP events. New instrumentation to provide the high sensitivity and wide dynamic range hard X-ray and γ-ray measurements, plus energetic neutral atom (ENA) imaging of SEPs above ∼2 R⊙, will enable the next great leap forward in understanding particle acceleration and energy release is large solar eruptions—solar flares and associated fast coronal mass ejections (CMEs).

[1]  M. Shay,et al.  Average properties of the magnetic reconnection ion diffusion region in the Earth's magnetotail: The 2001–2005 Cluster observations and comparison with simulations , 2009 .

[2]  Brian R. Dennis,et al.  Solar Electron Beams Detected in Hard X-Rays and Radio Waves , 1995 .

[3]  D. McKenzie,et al.  Observations of Separator Reconnection to an Emerging Active Region , 2005 .

[4]  H. Ji,et al.  Experimental Test of the Sweet-Parker Model of Magnetic Reconnection , 1997 .

[5]  James A. Miller,et al.  An Explanation for the Different Locations of Electron and Ion Acceleration in Solar Flares , 2004 .

[6]  R. Murphy,et al.  Solar Atmospheric Abundances and Energy Content in Flare-accelerated Ions from Gamma-Ray Spectroscopy , 1995 .

[7]  M. Shay,et al.  Electron acceleration from contracting magnetic islands during reconnection , 2006, Nature.

[8]  Lindsay Glesener,et al.  MEASUREMENTS OF THE CORONAL ACCELERATION REGION OF A SOLAR FLARE , 2010 .

[9]  A. Benz,et al.  Spectral Hardening in Large Solar Flares , 2007, 0708.2472.

[10]  Gordon J. Hurford,et al.  First Gamma-Ray Images of a Solar Flare , 2003 .

[11]  N. Crosby,et al.  Are solar gamma-ray-line flares different from other large flares? , 1994 .

[12]  W. T. Vestrand,et al.  Evidence for a spatially extended component of gamma rays from solar flares , 1993 .

[13]  C. Russell,et al.  Observations of magnetic merging and the formation of the plasma sheet in the Earth's magnetotail , 1977 .

[14]  A. Caspi,et al.  RHESSI LINE AND CONTINUUM OBSERVATIONS OF SUPER-HOT FLARE PLASMA , 2010, 1105.2839.

[15]  R. Ramaty,et al.  Solar Atmospheric and Solar Flare Accelerated Helium Abundances from Gamma-Ray Spectroscopy , 1997 .

[16]  B. Dennis,et al.  Determination of Low-Energy Cutoffs and Total Energy of Nonthermal Electrons in a Solar Flare on 2002 April 15 , 2005 .

[17]  Mykola Gordovskyy,et al.  Particle Acceleration Asymmetry in a Reconnecting Nonneutral Current Sheet , 2004 .

[18]  Robert P. Lin,et al.  SPECTRA OF SOLAR IMPULSIVE ELECTRON EVENTS OBSERVED NEAR EARTH , 2009 .

[19]  H. Reid,et al.  SOLAR WIND DENSITY TURBULENCE AND SOLAR FLARE ELECTRON TRANSPORT FROM THE SUN TO THE EARTH , 2010, 1007.5310.

[20]  S. Kahler Injection profiles of solar energetic particles as functions of coronal mass ejection heights , 1994 .

[21]  A. Moretti,et al.  Nonthermal Hard X-Ray Emission and Iron Kα Emission from a Superflare on II Pegasi , 2006, astro-ph/0609205.

[22]  Multi-Wavelength Analysis of High-Energy Electrons in Solar Flares: A Case Study of the August 20, 2002 Flare , 2005, astro-ph/0508636.

[23]  Ralf S. Klessen,et al.  American Institute of Physics Conference Series , 2010 .

[24]  R. Ramaty,et al.  Acceleration in solar flares: Interacting particles versus interplanetary particles , 1993 .

[25]  A. Tylka,et al.  A Model for Spectral and Compositional Variability at High Energies in Large, Gradual Solar Particle Events , 2006 .

[26]  R. Lin,et al.  The derivation of parent electron spectra from bremsstrahlung hard X-ray spectra , 1992 .

[27]  H. Hudson,et al.  Non-thermal processes in large solar flares , 1975 .

[28]  Gordon J. Hurford,et al.  Gamma-Ray Imaging of the 2003 October/November Solar Flares , 2006 .

[29]  S. Bale,et al.  Evidence for electron acceleration up to approximately 300 keV in the magnetic reconnection diffusion region of earth's magnetotail. , 2002, Physical review letters.

[30]  B. Somov,et al.  Particle acceleration in reconnecting current sheets , 1993 .

[31]  J. Kašparová,et al.  Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Low-Energy Cutoffs In Electron Spectra Of Solar Flares: Statistical Survey , 2022 .

[32]  B. Rogers,et al.  Formation of secondary islands during magnetic reconnection , 2006 .

[33]  S. Krucker,et al.  Solar Flare Hard X-Ray Emission from the High Corona , 2007 .

[34]  S. Krucker,et al.  Solar Flare Electron Spectra at the Sun and near the Earth , 2007 .

[35]  D. Forrest,et al.  Solar Gamma Ray Lines observed during the Solar Activity of August 2 to August 11, 1972 , 1973, Nature.

[36]  Edmond C. Roelof,et al.  Impulsive Near-relativistic Solar Electron Events: Delayed Injection with Respect to Solar Electromagnetic Emission , 2002 .

[37]  Julia L. R. Saba,et al.  Impulsive solar X-ray bursts , 1977 .

[38]  D. Reames Solar energetic particles: A paradigm shift , 1995 .

[39]  Albert Y. Shih,et al.  RHESSI OBSERVATIONS OF THE PROPORTIONAL ACCELERATION OF RELATIVISTIC >0.3 MeV ELECTRONS AND >30 MeV PROTONS IN SOLAR FLARES , 2009 .

[40]  M. Karlický,et al.  Acceleration and heating processes in a collapsing magnetic trap , 2004 .

[41]  Kevin C. Hurley,et al.  A new component of hard X-rays in solar flares , 1981 .

[42]  F. Mozer,et al.  Evidence of diffusion regions at a subsolar magnetopause crossing. , 2002, Physical review letters.

[43]  Shinsuke Imada,et al.  Observation of energetic electrons within magnetic islands , 2008 .

[44]  Hantao Ji,et al.  Experimental test of the sweet-parker model of magnetic reconnection , 1998 .

[45]  S. Krucker,et al.  Hard X-Ray Spectral Evolution and Production of Solar Energetic Particle Events during the January 2005 X-Class Flares , 2008 .

[46]  P. Sweet Mechanisms of Solar Flares , 1969 .

[47]  E. Cliver,et al.  Composition and azimuthal spread of solar energetic particles from impulsive and gradual flares , 1992 .

[48]  M. Fujimoto,et al.  ELECTRON ACCELERATION BY MULTI-ISLAND COALESCENCE , 2010, 1004.1154.

[49]  J. Brown,et al.  Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[50]  W. Hajdas,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[51]  I. J. Rae,et al.  Tail Reconnection Triggering Substorm Onset , 2008, Science.

[52]  N. Sheeley,et al.  Coronal Mass Ejections Associated with Impulsive Solar Energetic Particle Events , 2001 .

[53]  R. Leske,et al.  STEREO OBSERVATIONS OF ENERGETIC NEUTRAL HYDROGEN ATOMS DURING THE 2006 DECEMBER 5 SOLAR FLARE , 2009 .

[54]  T. Kosugi,et al.  Spectral characteristics of above-the-looptop hard X-ray source , 2000 .

[55]  H. Friedman,et al.  Rocket Observation of X-Ray Emission in a Solar Flare , 1957, Nature.

[56]  Greg Kopp,et al.  Solar irradiance variability during the October 2003 solar storm period , 2004 .

[57]  S. Forbush,et al.  Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun , 1946 .

[58]  T. Sanderson,et al.  Wind Spacecraft Observations of Solar Impulsive Electron Events Associated with Solar Type III Radio Bursts , 1998 .

[59]  R. Ramaty,et al.  The Giant 1991 June 1 Flare: Evidence for Gamma-Ray Production in the Corona and Accelerated Heavy Ion Abundance Enhancements from Gamma-Ray Spectroscopy , 1997 .

[60]  M. Shimojo,et al.  Coronal X-ray jets observed with Yohkoh/SXT , 1996 .

[61]  A Model for Spontaneous Onset of Fast Magnetic Reconnection , 2006, physics/0604001.

[62]  Eric Ronald Priest,et al.  An emerging flux model for the solar flare phenomenon , 1977 .

[63]  G. Holman,et al.  Evidence for the Formation of a Large-Scale Current Sheet in a Solar Flare , 2003 .

[64]  B. Dennis,et al.  Nonthermal X-Ray Spectral Flattening toward Low Energies in Early Impulsive Flares , 2007 .

[65]  R. Lin,et al.  Two accelerated electron populations in the 1980 June 27 solar flare , 1993 .

[66]  S. Krucker,et al.  PITCH-ANGLE DISTRIBUTIONS AND TEMPORAL VARIATIONS OF 0.3–300 keV SOLAR IMPULSIVE ELECTRON EVENTS , 2010 .

[67]  S. Krucker,et al.  A STATISTICAL STUDY OF SPECTRAL HARDENING IN SOLAR FLARES AND RELATED SOLAR ENERGETIC PARTICLE EVENTS , 2009 .

[68]  Eugene N. Parker,et al.  Sweet's mechanism for merging magnetic fields in conducting fluids , 1957 .

[69]  R. C. Carrington Description of a Singular Appearance seen in the Sun on September 1, 1859 , 1859 .

[70]  H. Hudson,et al.  Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem , 2007, 0712.3452.

[71]  S. Krucker,et al.  RHESSI Observations of Particle Acceleration and Energy Release in an Intense Solar Gamma-Ray Line Flare , 2003 .

[72]  T. Kosugi,et al.  A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection , 1994, Nature.

[73]  M. Porkolab,et al.  Evidence and theory for trapped electrons in guide field magnetotail reconnection , 2008 .

[74]  J. M. Bosqued,et al.  A three-dimensional plasma and energetic particle investigation for the wind spacecraft , 1995 .

[75]  R. Lin Energetic solar electrons in the interplanetary medium , 1985 .

[76]  S. Krucker,et al.  On the Origin of Impulsive Electron Events Observed at 1 AU , 1999 .

[77]  R. P. Lepping,et al.  In situ detection of collisionless reconnection in the Earth's magnetotail , 2001, Nature.

[78]  J. Eastwood,et al.  In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters , 2009 .

[79]  J. Brown,et al.  Implications of solar flare hard X-ray knee spectra observed by RHESSI , 2003 .

[80]  R. Lin Non-relativistic solar electrons , 1974 .

[81]  Evolution of magnetic field structure and particle acceleration in solar flares , 2000 .

[82]  E. Cliver,et al.  Electrons and Protons in Solar Energetic Particle Events , 2007 .

[83]  John McKean,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[84]  S. Krucker,et al.  Hard X-Ray Emissions from Partially Occulted Solar Flares , 2008 .

[85]  Alan L. Kiplinger,et al.  Comparative Studies of Hard X-Ray Spectral Evolution in Solar Flares with High-Energy Proton Events Observed at Earth , 1995 .

[86]  S. Krucker,et al.  Hard X-Ray Source Motions in the 2002 July 23 Gamma-Ray Flare , 2003 .

[87]  G. Mason 3He-Rich Solar Energetic Particle Events , 2007 .

[88]  Flare Ribbon Expansion and Energy Release Rate , 2004 .

[89]  Masaaki Yamada,et al.  Magnetic Reconnection in Astrophysical and , 2009 .

[90]  Richard A. Schwartz,et al.  Compton backscattered and primary X-rays from solar flares: angle dependent Green's function correction for photospheric albedo , 2005 .

[91]  S. Krucker,et al.  Hard X-Rays Associated with Type III Radio Bursts , 2008 .

[92]  P. G. Jonker,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[93]  J. Brown,et al.  Chromospheric Height and Density Measurements in a Solar Flare Observed with RHESSI – II. Data Analysis , 2002 .

[94]  Wei Liu,et al.  Double Coronal Hard and Soft X-Ray Source Observed by RHESSI: Evidence for Magnetic Reconnection and Particle Acceleration in Solar Flares , 2007, 0709.1963.

[95]  S. Krucker,et al.  Hard X-ray footpoint motions in solar flares: Comparing magnetic reconnection models with observations , 2005 .

[96]  Michael Hesse,et al.  Geospace Environment Modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and Hall effects , 2001 .

[97]  Y.-M. Wang,et al.  Coronal Holes, Jets, and the Origin of 3He-rich Particle Events , 2006 .