Qualitative study of radial solutions of the Ginzburg-Landau system in RN (N ≥ 3)
暂无分享,去创建一个
Abstract In this work, we are interested in solutions ω : R N → R N , N ≥ 3, to Ginzburg-Landau system −Δω = ω(1 − |ω|2), having the form ω(x) = u(|x|)g( x |x| ) . By using a shootin we prove the existence of three families of profiles u and investigate its properties. In particular, we shall show that, for any admissible function g, there exists a unique positive solution ug which approaches 1 as |x| → +∞.
[1] Vardan Akopian,et al. Sur les solutions radiales de l'équation −Δu = u(1 − ¦u¦2) dans ℝN (N ≥ 3) , 1997 .
[2] Charles M. Elliott,et al. Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[3] R. Hervé,et al. Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau , 1994 .