Recognising and Interpreting Named Temporal Expressions

This paper introduces a new class of temporal expression ‐ named temporal expressions ‐ and methods for recognising and interpreting its members. The commonest temporal expressions typically contain date and time words, like April or hours. Research into recognising and interpreting these typical expressions is mature in many languages. However, there is a class of expressions that are less typical, very varied, and difficult to automatically interpret. These indicate dates and times, but are harder to detect because they often do not contain time words and are not used frequently enough to appear in conventional temporally-annotated corpora ‐ for example Michaelmas or Vasant Panchami. Using Wikipedia and linked data, we automatically construct a resource of English named temporal expressions, and use it to extract training examples from a large corpus. These examples are then used to train and evaluate a named temporal expression recogniser. We also introduce and evaluate rules for automatically interpreting these expressions, and we observe that use of the rules improves temporal annotation performance over existing corpora.

[1]  Kalina Bontcheva,et al.  Crowdsourcing research opportunities: lessons from natural language processing , 2012, i-KNOW '12.

[2]  Estela Saquete Boró,et al.  Applying semantic knowledge to the automatic processing of temporal expressions and events in natural language , 2013, Inf. Process. Manag..

[3]  Christian S. Jensen,et al.  Integrating multiple calendars using τ ZAMAN , 2007, Softw. Pract. Exp..

[4]  Tibor Kiss,et al.  Unsupervised Multilingual Sentence Boundary Detection , 2006, CL.

[5]  Marcelo A. Montemurro,et al.  Beyond the Zipf-Mandelbrot law in quantitative linguistics , 2001, ArXiv.

[6]  Michael Gertz,et al.  Identification of top relevant temporal expressions in documents , 2012, TempWeb '12.

[7]  Mark Steedman,et al.  Romantics and Revolutionaries , 2011 .

[8]  Raphaël Troncy,et al.  LODE: Linking Open Descriptions of Events , 2009, ASWC.

[9]  Cristina Ribeiro,et al.  Use of Temporal Expressions in Web Search , 2008, ECIR.

[10]  Hans Reichenbach,et al.  The Tenses of Verbs , 2005, The Language of Time - A Reader.

[11]  Abdur Chowdhury,et al.  A picture of search , 2006, InfoScale '06.

[12]  Donna Gates,et al.  From Language to Time: A Temporal Expression Anchorer , 2006, Thirteenth International Symposium on Temporal Representation and Reasoning (TIME'06).

[13]  Inderjeet Mani,et al.  2003 Standard for the Annotation of Temporal Expressions , 2004 .

[14]  Kalina Bontcheva,et al.  Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics , 2013, PLoS Comput. Biol..

[15]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.

[16]  Ricardo Campos,et al.  Enriching temporal query understanding through date identification: how to tag implicit temporal queries? , 2012, TempWeb '12.

[17]  Daniel Jurafsky,et al.  Parsing Time: Learning to Interpret Time Expressions , 2012, NAACL.

[18]  Michael Gertz,et al.  HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions , 2010, *SEMEVAL.

[19]  Fuchun Peng,et al.  Improving search relevance for implicitly temporal queries , 2009, SIGIR.

[20]  Leon Derczynski,et al.  Massively Increasing TIMEX3 Resources: A Transduction Approach , 2012, LREC.

[21]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[22]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[23]  Fernando Diaz,et al.  Temporal profiles of queries , 2007, TOIS.

[24]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[25]  Curtis E. Dyreson,et al.  Integrating multiple calendars using τ Z AMAN , 2007 .

[26]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[27]  Leon Derczynski,et al.  TIMEN: An Open Temporal Expression Normalisation Resource , 2012, LREC.