The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims. In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods. We used the products of the Gaia-ESO Survey analysis of 12 young regions (age < 100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (i.e. Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. Results. All the pre-main-sequence clusters considered in this paper have close-To-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. Conclusions. This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. (Less)

[1]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon i , 2017, 1701.03741.

[2]  V. D’Orazi,et al.  First determination of s -process element abundances in pre-main sequence clusters: Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602 , 2016, 1612.06406.

[3]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[4]  D. O. Astronomy,et al.  The evolution of the Milky Way: New insights from open clusters , 2016, 1609.02619.

[5]  F. Baudin,et al.  Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way's radial metallicity gradient , 2016, 1608.04951.

[6]  P. Nissen,et al.  High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age , 2016, 1606.08399.

[7]  M. Asplund,et al.  Nucleosynthetic history of elements in the Galactic disk - [X/Fe]–age relations from high-precision spectroscopy , 2016, 1606.04842.

[8]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy &amp; Astrophysics.

[9]  B. Andrews,et al.  Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models , 2016, 1604.08613.

[10]  A. Bragaglia,et al.  Abundances and kinematics for ten anticentre open clusters , 2016, 1602.07121.

[11]  L. Stanghellini,et al.  Metallicity gradients in Local Universe galaxies: time evolution and effects of radial migration , 2016, 1602.02529.

[12]  G. Carraro,et al.  The Gaia-ESO Survey: membership and initial mass function of the γ Velorum cluster , 2016, 1601.06513.

[13]  M. Schultheis,et al.  When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy , 2016, 1601.03042.

[14]  C. Prieto,et al.  Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey , 2016, 1601.03099.

[15]  F. Fraternali,et al.  Accretion, radial flows and abundance gradients in spiral galaxies , 2015, 1510.04289.

[16]  J. Alves,et al.  Cosmography of OB stars in the solar neighbourhood , 2015 .

[17]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[18]  C. Battistini,et al.  The origin and evolution of r- and s-process elements in the Milky Way stellar disk , 2015, 1511.00966.

[19]  J. Mel'endez,et al.  Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars , 2015, 1511.01012.

[20]  Sergey E. Koposov,et al.  The Gaia -ESO Survey: Chemical signatures of rocky accretion in a young solar-type star , 2015, 1509.00933.

[21]  V. D’Orazi,et al.  Photometric and spectroscopic study of the intermediate-age open cluster ngc 2355* , 2015, 1508.05100.

[22]  C. Esteban,et al.  The radial abundance gradient of chlorine in the Milky Way , 2015, 1506.05621.

[23]  S. Chojnowski,et al.  IN-SYNC. III. THE DYNAMICAL STATE OF IC 348—A SUPER-VIRIAL VELOCITY DISPERSION AND A PUZZLING SIGN OF CONVERGENCE , 2015, 1505.07504.

[24]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[25]  P. Nissen High-precision abundances of elements in solar twin stars - Trends with stellar age and elemental condensation temperature , 2015, 1504.07598.

[26]  C. Babusiaux,et al.  Gaia-ESO Survey: Analysis of pre-main sequence stellar spectra , 2015, 1501.04450.

[27]  A. Klutsch,et al.  The Gaia-ESO Survey: Discovery of a spatially extended low-mass population in the Vela OB2 association , 2015, 1501.01330.

[28]  E. Athanassoula,et al.  Evolution of the Milky Way with radial motions of stars and gas - I. The solar neighbourhood and the thin and thick disks , 2014, 1412.0585.

[29]  E. Athanassoula,et al.  Evolution of the Milky Way with radial motions of stars and gas II. The evolution of abundance profiles from H to Ni , 2014, 1412.4859.

[30]  M. Lehnert,et al.  Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances , 2014, 1410.3829.

[31]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[32]  David Montes Gutiérrez The Gaia-ESO survey: metallicity of the chamaeleon i star-forming region , 2014 .

[33]  M. Irwin,et al.  The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705 , 2014, 1407.1510.

[34]  F. Bresolin,et al.  Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution , 2014, 1406.3986.

[35]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the first abundance determination of the pre-main-sequence cluster gamma Velorum , 2014, 1405.6586.

[36]  A. Bragaglia,et al.  Gaia-ESO Survey: Empirical classification of VLT/Giraffe stellar spectra in the wavelength range 6440–6810 Å in the γ Velorum cluster, and calibration of spectral indices , 2014, 1405.1205.

[37]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[38]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[39]  Sergey E. Koposov,et al.  Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815 , 2014, 1403.7451.

[40]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[41]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster , 2014, 1401.4979.

[42]  A. Bragaglia,et al.  NGC 1817, NGC 2141 and Berkeley 81: three BOCCE clusters of intermediate age , 2013, 1311.2469.

[43]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy , 2013, 1312.3925.

[44]  E. Rossetti,et al.  GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC2 , 2013, 1510.06870.

[45]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[46]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[47]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[48]  K. Biazzo,et al.  The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties , 2012, 1209.5316.

[49]  Astronomy,et al.  Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near and Ursa Major† , 2012, 1209.2591.

[50]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[51]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[52]  N. Przybilla,et al.  Present-day cosmic abundances - A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models , 2012, 1203.5787.

[53]  B. Gibson,et al.  MaGICC discs: matching observed galaxy relationships over a wide stellar mass range , 2012, 1201.3359.

[54]  M. Bessell,et al.  DISTANCE AND THE INITIAL MASS FUNCTION OF YOUNG OPEN CLUSTERS IN THE η CARINA NEBULA: Tr 14 AND Tr 16 , 2012, 1201.0623.

[55]  M. Meyer,et al.  THE INITIAL MASS FUNCTION AND DISK FREQUENCY OF THE ρ OPHIUCHI CLOUD: AN EXTINCTION-LIMITED SAMPLE , 2011, 1109.0561.

[56]  H Germany,et al.  The chemical composition of the Orion star forming region - III. C, N, Ne, Mg, and Fe abundances in B-type stars revisited , 2011, 1104.3154.

[57]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[58]  Arlo U. Landolt,et al.  DEEP, WIDE-FIELD CCD PHOTOMETRY FOR THE OPEN CLUSTER NGC 3532 , 2011, 1101.3268.

[59]  K. Biazzo,et al.  Chemical composition of the Taurus-Auriga association , 2010, 1012.0848.

[60]  Italy.,et al.  Chemical pattern across the young associations ONC and OB1b , 2010, 1010.1658.

[61]  D. Graczyk,et al.  THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. II. AZIMUTHAL AND RADIAL VARIATION IN ABUNDANCES FROM CEPHEIDS , 2011 .

[62]  A. Bragaglia,et al.  Old open clusters and the Galactic metallicity gradient: Berkeley 20, Berkeley 66, and Tombaugh 2 ? , 2010, 1011.2349.

[63]  J. Bailin,et al.  Cosmological galaxy formation simulations using smoothed particle hydrodynamics , 2010 .

[64]  D. Lambert,et al.  Lithium Abundances in the alpha Per Cluster , 2010, 1009.2323.

[65]  F. Matteucci,et al.  Quantifying the uncertainties of chemical evolution studies II. Stellar yields , 2010, 1006.5863.

[66]  Phillip A. Cargile,et al.  EMPLOYING A NEW, BVIc PHOTOMETRIC SURVEY OF IC 4665 TO INVESTIGATE THE AGE OF THIS YOUNG OPEN CLUSTER , 2010, 1005.3329.

[67]  Tennessee.,et al.  Low-mass members of the young cluster IC 4665 and pre-main-sequence lithium depletion , 2009, 0908.1317.

[68]  M. Bessell,et al.  A SPITZER VIEW OF THE YOUNG OPEN CLUSTER NGC 2264 , 2009, 0906.3072.

[69]  P. François,et al.  On the metallicity gradient of the Galactic disk , 2009, 0906.3140.

[70]  V. D’Orazi,et al.  Chemical composition of the young open clusters IC 2602 and IC 2391 , 2009, 0905.1835.

[71]  V. D’Orazi,et al.  Metallicity of low-mass stars in Orion , 2009, 0905.1840.

[72]  I. O. Astronomy,et al.  The effect of different type Ia supernova progenitors on Galactic chemical evolution , 2009, 0905.0272.

[73]  N. Santos,et al.  Search for associations containing young stars (SACY) - II. Chemical abundances of stars in 11 young associations in the solar neighborhood , 2009, 0904.1221.

[74]  E. Alfaro,et al.  Hierarchical Star Formation: Stars and Stellar Clusters in the Gould Belt , 2009, 0903.0596.

[75]  R. Kudritzki,et al.  CHEMICAL ABUNDANCE PATTERNS IN THE INNER GALAXY: THE SCUTUM RED SUPERGIANT CLUSTERS , 2009, 0902.2378.

[76]  F. V. Leeuwen,et al.  Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue , 2009, 0902.1039.

[77]  Laura Magrini,et al.  The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters , 2008, 0812.0854.

[78]  R. Kudritzki,et al.  THE CHEMICAL ABUNDANCES IN THE GALACTIC CENTER FROM THE ATMOSPHERES OF RED SUPERGIANTS , 2008, 0811.3179.

[79]  London,et al.  The stellar association around Gamma Velorum and its relationship with Vela OB2 , 2008, 0810.5320.

[80]  R. Kudritzki,et al.  METALLICITY IN THE GALACTIC CENTER: THE QUINTUPLET CLUSTER , 2008, 0809.3185.

[81]  D. O. Astronomy,et al.  Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20 , 2008, 0807.2313.

[82]  F. Palla,et al.  Detection of the lithium depletion boundary in the young open cluster IC 4665 , 2007, 0712.0226.

[83]  R. Genzel,et al.  The most massive stars in the Arches cluster , 2007, 0711.0657.

[84]  K. Luhman The Stellar Population of the Chamaeleon I Star-forming Region , 2007, 0710.3037.

[85]  E. Mamajek On the distance to the Ophiuchus star-forming region , 2007, 0709.0505.

[86]  C. M. Bidin,et al.  Observational templates of star cluster disruption. The stellar group NGC 1901 in front of the Large , 2007, astro-ph/0701758.

[87]  T. R. Jeffries A maximum likelihood method for fitting colour-magnitude diagrams , 2006, astro-ph/0609764.

[88]  J. Alves,et al.  On the difference between nuclear and contraction ages , 2006, astro-ph/0603009.

[89]  M. R. Haas,et al.  Abundance Gradients in the Galaxy , 2006 .

[90]  N. Smith A census of the Carina Nebula — I. Cumulative energy input from massive stars , 2006, astro-ph/0601060.

[91]  M. Mollá,et al.  A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data , 2005 .

[92]  Joana M. Oliveira,et al.  The Lithium depletion boundary in NGC 2547 as a test of pre-main-sequence evolutionary models , 2004, astro-ph/0411112.

[93]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[94]  Italy.,et al.  The star formation region NGC 6530: Distance, ages and initial mass function , 2004, astro-ph/0410066.

[95]  M. Marconi,et al.  Classical Cepheid Pulsation Models. X. The Period-Age Relation , 2004, astro-ph/0411756.

[96]  M. Bessell,et al.  The Initial Mass Function and Young Brown Dwarf Candidates in NGC 2264. I. The Initial Mass Function around S Monocerotis , 2004 .

[97]  K. Cunha,et al.  Galactic Metallicity Gradients Derived from a Sample of OB Stars , 2004, astro-ph/0409084.

[98]  John R. Stauffer,et al.  Spectroscopy of Very Low Mass Stars and Brown Dwarfs in IC 2391: Lithium Depletion and Hα Emission , 2004 .

[99]  J. Schmitt,et al.  Membership, rotation, and lithium abundances in the open clusters NGC 2451 A and B , 2004 .

[100]  E. H. Olsen,et al.  The Geneva-Copenhagen survey of the Solar neighbourhood - Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs , 2004, astro-ph/0405198.

[101]  J. Lépine,et al.  The Galactic abundance gradient from Cepheids - V. Transition zone between 10 and 11 kpc , 2004 .

[102]  Laeff,et al.  Cool stars in NGC 2547 and pre-main-sequence lithium depletion , 2003, astro-ph/0305058.

[103]  J. H. M. M. Schmitt,et al.  An X-ray study of the open clusters NGC 2451 A and B , 2003 .

[104]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[105]  E. Totten,et al.  Membership, metallicity and lithium abundances for solar-type stars in NGC 6633 , 2002, astro-ph/0206367.

[106]  Michael S. Bessell,et al.  The Open Cluster NGC 2516. I. Optical Photometry , 2002 .

[107]  S. Randich,et al.  Membership, lithium, and metallicity in the young open clusters IC 2602 and IC 2391: Enlarging the sample ?;?? , 2001, astro-ph/0103260.

[108]  G. Walker,et al.  The Star Formation History of Trumpler 14 and Trumpler 16 , 2001 .

[109]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[110]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[111]  P. Price,et al.  Large-Scale Structure of the Carina Nebula , 2000, The Astrophysical journal.

[112]  J. R. Stauffer,et al.  The Lithium-Depletion Boundary and the Age of the Young Open Cluster IC 2391 , 1999, astro-ph/9907007.

[113]  N. Hambly,et al.  Results of a Deep Imaging Survey of One Square Degree of the Pleiades for Low-Luminosity Cluster Members , 1998 .

[114]  G. Carraro,et al.  On the Galactic disc age–metallicity relation , 1997, astro-ph/9707185.

[115]  M. Bessell,et al.  UBVRI H(alpha) Photometry of the Young Open Cluster NGC 2264 , 1997 .

[116]  F. Adams,et al.  Possible Stellar Metallicity Enhancements from the Accretion of Planets , 1997, astro-ph/9710110.

[117]  M. Giampapa,et al.  Rotational Velocities and Chromospheric/Coronal Activity of Low-Mass Stars in the Young Open Clusters IC 2391 and IC 2602 , 1997 .

[118]  M. Shetrone,et al.  The Evolution of the Lithium Abundances of Solar-Type Stars. VI. The End of Lithium in the Pleiades , 1996 .

[119]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .

[120]  F. Ferrini,et al.  Evolution of spiral galaxies. III. Application of the multiphase model to the galactic disk , 1994 .

[121]  John R. Stauffer,et al.  The evolution of the lithium abundances of solar-type stars. III - The Pleiades , 1993 .