Computations in the early visual cortex

This paper reviews some of the recent neurophysiological studies that explore the variety of visual computations in the early visual cortex in relation to geometric inference, i.e. the inference of contours, surfaces and shapes. It attempts to draw connections between ideas from computational vision and findings from awake primate electrophysiology. In the classical feed-forward, modular view of visual processing, the early visual areas (LGN, V1 and V2) are modules that serve to extract local features, while higher extrastriate areas are responsible for shape inference and invariant object recognition. However, recent findings in primate early visual systems reveal that the computations in the early visual cortex are rather complex and dynamic, as well as interactive and plastic, subject to influence from global context, higher order perceptual inference, task requirement and behavioral experience. The evidence argues that the early visual cortex does not merely participate in the first stage of visual processing, but is involved in many levels of visual computation.

[1]  V. S. Ramachandran,et al.  Perception of shape from shading , 1988, Nature.

[2]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[3]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[4]  J. Braun Shape-from-shading is independent of visual attention and may be a 'texton'. , 1993, Spatial vision.

[5]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[6]  Nava Rubin,et al.  Salient and multiple illusory surfaces , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[7]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[8]  David C. Somers,et al.  A local circuit integration approach to understanding visual cortical receptive fields , 1997 .

[9]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[10]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[11]  Carl R Olson,et al.  Object-based vision and attention in primates , 2001, Current Opinion in Neurobiology.

[12]  C. Li,et al.  Extensive integration field beyond the classical receptive field of cat's striate cortical neurons--classification and tuning properties. , 1994, Vision research.

[13]  M. Sanders Handbook of Sensory Physiology , 1975 .

[14]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[15]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Jack L. Gallant,et al.  Erratum: Neural activity in areas V1 ... (NeuroReport 9:7 (1673-1678)) , 1998 .

[17]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[18]  John Daugman,et al.  Neural networks for image transformation, analysis, and compression , 1988, Neural Networks.

[19]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[20]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[21]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  L. Matin,et al.  Spatial summation among coextensive and parallel line segments across wide separations (50°): Egocentric localization and the Great Circle Model , 1994, Vision Research.

[23]  Sir G. Archaeopteryx Object-based attention in the primary visual cortex of the macaque monkey , 1998 .

[24]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[25]  W. D. Ross,et al.  A Neural Theory of Attentive Visual Search : Interactions of Boundary , Surface , Spatial , and Object Representations By : Stephen Grossberg , 2004 .

[26]  H. Spekreijse,et al.  Two distinct modes of sensory processing observed in monkey primary visual cortex (V1) , 2001, Nature Neuroscience.

[27]  R. Weller Two cortical visual systems in Old World and New World primates. , 1988, Progress in brain research.

[28]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[29]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[30]  M. Sur,et al.  Orientation Maps of Subjective Contours in Visual Cortex , 1996, Science.

[31]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[32]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[33]  Leslie G. Ungerleider,et al.  Contextual Modulation in Primary Visual Cortex of Macaques , 2001, The Journal of Neuroscience.

[34]  K. Boyer,et al.  Perceptual Organization for Artificial Vision Systems , 2000 .

[35]  C. Gross Visual Functions of Inferotemporal Cortex , 1973 .

[36]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[37]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[39]  Ken Nakayama,et al.  Attentional requirements in a ‘preattentive’ feature search task , 1997, Nature.

[40]  Victor A. F. Lamme,et al.  Figure-ground activity in primary visual cortex is suppressed by anesthesia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Guy Orban,et al.  Coding of three-dimensional shape in macaque inferior temporal cortex , 2000 .

[42]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[43]  Tai Sing Lee,et al.  The role of V1 in shape representation , 1997 .

[44]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[46]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[47]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: part 1.: an account of basic findings , 1988 .

[48]  J. Bullier,et al.  Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. , 2001, Journal of neurophysiology.

[49]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[50]  Elie Bienenstock,et al.  Compositionality, MDL Priors, and Object Recognition , 1996, NIPS.

[51]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[52]  S. Ullman Visual routines , 1984, Cognition.

[53]  R. Born,et al.  Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. , 1998, Neuroreport.

[55]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[56]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[57]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[58]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[59]  G. Grisetti,et al.  Further Reading , 1984, IEEE Spectrum.

[60]  Rodney Cotterill,et al.  Models of brain function , 1989 .

[61]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Zemel,et al.  Object-Based Attention and Occlusion Evidence From Normal Participants and a Computational Model , 1998 .

[63]  H. Blum Biological shape and visual science (part I) , 1973 .

[64]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[65]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[66]  Stephen Grossberg,et al.  Competitive Learning: From Interactive Activation to Adaptive Resonance , 1987, Cogn. Sci..

[67]  S. Zucker,et al.  Shape-from-shading on a cloudy day , 1994 .

[68]  Refractor Vision , 2000, The Lancet.

[69]  D. Mumford Elastica and Computer Vision , 1994 .

[70]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[71]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[72]  D. H. Hubel,et al.  RECEPTIVE FIELDS, BINOCULAR AND FUNCTIONAL ARCHITECTURE IN THE CAT’S VISUAL CORTEX , 1962 .

[73]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[74]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[76]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[77]  Shimon Ullman Sequence Seeking and Counterstreams: A Model for Bidirectional Information Flow in the Cortex , 1995 .

[78]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[79]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[80]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[81]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[82]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[83]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[84]  Stephen M. Pizer,et al.  Object representation by cores: Identifying and representing primitive spatial regions , 1995, Vision Research.

[85]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[86]  D. Mumford,et al.  Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency , 2002, Nature Neuroscience.

[87]  D. V. van Essen,et al.  Response profiles to texture border patterns in area V1 , 2000, Visual Neuroscience.

[88]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[89]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[90]  P. Lennie Receptive fields , 2003, Current Biology.

[91]  N. Logothetis Object vision and visual awareness. , 1998, Current opinion in neurobiology.

[92]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[93]  G. Orban,et al.  Three-Dimensional Shape Coding in Inferior Temporal Cortex , 2000, Neuron.

[94]  W. James,et al.  The Principles of Psychology. , 1983 .

[95]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[96]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[97]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[98]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[99]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[100]  Pietro Perona,et al.  Early computation of shape and reflectance in the visual system , 1996, Nature.

[101]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[102]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[103]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[104]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[105]  S. Hochstein,et al.  Attentional Demands Following Perceptual Skill Training , 2001, Psychological science.

[106]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[107]  Zhaoping Li,et al.  Computational Design and Nonlinear Dynamics of a Recurrent Network Model of the Primary Visual Cortex , 2001, Neural Computation.

[108]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[109]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[110]  Tai Sing Lee,et al.  A unified model of spatial and object attention based on inter-cortical biased competition , 2002, Neurocomputing.

[111]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[112]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[113]  O. D. Creutzfeldt,et al.  Representation of complex visual stimuli in the brain , 1978, Naturwissenschaften.

[114]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[115]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.