Advances in the biology and chemistry of sialic acids.

Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis, as well as large-scale E. coli cell-based production, have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts not only will lead to a better understanding of the biological and pathological importance of sialic acids and their diversity but also could lead to the development of therapeutics.

[1]  G. Boons,et al.  A novel and versatile glycosyl donor for the preparation of glycosides of N-acetylneuraminic acid , 1998 .

[2]  Takashi Takahashi,et al.  An Effective Sialylation Method Using N‐Troc‐ and N‐Fmoc‐Protected β‐Thiophenyl Sialosides and Application to the One‐Pot Two‐Step Synthesis of 2,6‐Sialyl‐T Antigen. , 2004 .

[3]  Huilei Yu,et al.  Chemoenzymatic synthesis of CMP-sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP-sialic acid synthetases. , 2004, Bioorganic & medicinal chemistry.

[4]  Philippe Delannoy,et al.  The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. , 2005, Glycobiology.

[5]  B. Samyn-Petit,et al.  The human sialyltransferase family. , 2001, Biochimie.

[6]  P. Crocker,et al.  Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. , 2006, Biochemical and biophysical research communications.

[7]  M. Kiso,et al.  Extending the possibility of an N-Troc-protected sialic acid donor toward variant sialo-glycoside synthesis , 2003 .

[8]  Yanhong Li,et al.  Pasteurella multocida sialic acid aldolase: a promising biocatalyst , 2008, Applied Microbiology and Biotechnology.

[9]  G S Kansas,et al.  Selectins and their ligands: current concepts and controversies. , 1996, Blood.

[10]  C. Bertozzi,et al.  Leukocyte adhesion: Two selectins converge on sulphate , 1996, Current Biology.

[11]  S. Withers,et al.  Structural analysis of the alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni in apo and substrate-analogue bound forms. , 2007, Biochemistry.

[12]  F. Oesch,et al.  In vivo modulated N‐acyl side chain of N‐acetylneuraminic acid modulates the cell contact‐dependent inhibition of growth , 1996, FEBS letters.

[13]  R. Schauer,et al.  Structure, function and metabolism of sialic acids , 1998, Cellular and Molecular Life Sciences CMLS.

[14]  Harshal A. Chokhawala,et al.  One-pot three-enzyme chemoenzymatic approach to the synthesis of sialosides containing natural and non-natural functionalities , 2007, Nature Protocols.

[15]  Chi‐Huey Wong,et al.  A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide in situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose, and CMP-sialic acid , 1991 .

[16]  S. Hanashima,et al.  Synthesis of a sialic acid alpha(2-3) galactose building block and its use in a linear synthesis of sialyl Lewis X. , 2007, Organic letters.

[17]  D. Gin,et al.  Dehydrative sialylation with C2-hemiketal sialyl donors. , 2003, Organic letters.

[18]  Roland Schauer,et al.  Achievements and challenges of sialic acid research , 2000, Glycoconjugate Journal.

[19]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[20]  Katsunori Tanaka,et al.  Highly Efficient Sialylation towards α(2-3)- and α(2-6)-Neu5Ac-Gal Synthesis: Significant ‘Fixed Dipole Effect’ of N-Phthalyl Group on α-Selectivity , 2005 .

[21]  C. Harding,et al.  Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. , 2006, Biochemistry.

[22]  P. Gemeiner,et al.  Production of cytidine 5′‐monophospho‐N‐acetyl‐β‐D‐neuraminic acid (CMP‐sialic acid) using enzymes or whole cells entrapped in calcium pectate–silica‐gel beads , 2004, Biotechnology and applied biochemistry.

[23]  Harshal A. Chokhawala,et al.  N-Terminal 112 amino acid residues are not required for the sialyltransferase activity of Photobacterium damsela α2,6-sialyltransferase , 2008, Biotechnology Letters.

[24]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[25]  P. Delannoy,et al.  1994, the year of sialyltransferases. , 1995, Glycobiology.

[26]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[27]  Takeshi Yamamoto,et al.  A β-galactoside α2,6-sialyltransferase produced by a marine bacterium, Photobacterium leiognathi JT-SHIZ-145, is active at pH 8 , 2007 .

[28]  B. Gibson,et al.  Haemophilus ducreyi Produces a Novel Sialyltransferase , 1999, The Journal of Biological Chemistry.

[29]  Ajit Varki,et al.  Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins , 2007, Nature.

[30]  T. A. Fritz,et al.  Xyloside priming of glycosaminoglycan biosynthesis and inhibition of proteoglycan assembly. , 2001, Methods in molecular biology.

[31]  Carolyn R. Bertozzi,et al.  Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry , 2008, Journal of the American Chemical Society.

[32]  E. Samain,et al.  Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. , 2008, Journal of biotechnology.

[33]  Yanhong Li,et al.  Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. , 2010, Glycobiology.

[34]  D. Gin,et al.  A New C(1)-Auxiliary for Anomeric Stereocontrol in the Synthesis of α-Sialyl Glycosides , 2001 .

[35]  G. Boons,et al.  Recent advances in o-sialylation. , 2000, Chemical reviews.

[36]  C. Bertozzi,et al.  Glycans in cancer and inflammation — potential for therapeutics and diagnostics , 2005, Nature Reviews Drug Discovery.

[37]  J. Brisson,et al.  The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. , 2009, Glycobiology.

[38]  Yanhong Li,et al.  Chemical preparation of sialyl Lewis x using an enzymatically synthesized sialoside building block. , 2008, Carbohydrate research.

[39]  V. Nizet,et al.  Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  V. Nizet,et al.  Genetic and biochemical modulation of sialic acid O-acetylation on group B Streptococcus: phenotypic and functional impact. , 2009, Glycobiology.

[41]  A. Varki,et al.  Siglecs--the major subfamily of I-type lectins. , 2006, Glycobiology.

[42]  J. Brisson,et al.  Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384 , 2000, The Journal of Biological Chemistry.

[43]  Masashi Tanaka,et al.  A Convenient and Efficient Synthesis of SLeX Analogs. , 1996, The Journal of organic chemistry.

[44]  C. Bertozzi,et al.  Chemoselective approaches to glycoprotein assembly. , 2001, Accounts of chemical research.

[45]  Wenjun Li,et al.  O-sialylation with N-acetyl-5-n,4-o-carbonyl-protected thiosialoside donors in dichloromethane: facile and selective cleavage of the oxazolidinone ring. , 2007, The Journal of organic chemistry.

[46]  M. Kiso,et al.  Synthetic study on α(2→8)-linked oligosialic acid employing 1,5-lactamization as a key step , 2009 .

[47]  Zhongwu Guo,et al.  Improving the antigenicity of sTn antigen by modification of its sialic acid residue for development of glycoconjugate cancer vaccines. , 2006, Bioconjugate chemistry.

[48]  Jaroslav Koca,et al.  Structures and mechanisms of glycosyltransferases. , 2006, Glycobiology.

[49]  V. Nizet,et al.  Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure , 2009, Proceedings of the National Academy of Sciences.

[50]  Jennifer A. Prescher,et al.  Probing mucin-type O-linked glycosylation in living animals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G J Davies,et al.  A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. , 1997, The Biochemical journal.

[52]  A. Fisher,et al.  Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. , 2007, Biochemistry.

[53]  Takeshi Yamamoto,et al.  Cloning and Expression of a Marine Bacterial β-Galactoside α2, 6-Sialyltransferase Gene from Photobacterium damsela JT0160 , 1998 .

[54]  F. A. Troy,et al.  Polysialylation: from bacteria to brains. , 1992, Glycobiology.

[55]  P. Jansson,et al.  5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: chemistry and biochemistry. , 2003, Advances in carbohydrate chemistry and biochemistry.

[56]  A. Varki,et al.  Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. , 2008, ACS chemical biology.

[57]  T. Ramya,et al.  High-efficiency labeling of sialylated glycoproteins on living cells , 2009, Nature Methods.

[58]  A. Imberty,et al.  Structure-Function Analysis of the Human Sialyltransferase ST3Gal I , 2004, Journal of Biological Chemistry.

[59]  Karl F Johnson,et al.  Synthesis of oligosaccharides by bacterial enzymes , 1999, Glycoconjugate Journal.

[60]  I. Wilson,et al.  Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity , 1983, Nature.

[61]  Baolin Wu,et al.  Stereoselective iterative one-pot synthesis of N-glycolylneuraminic acid-containing oligosaccharides. , 2008, Organic letters.

[62]  Chi‐Huey Wong,et al.  Enzyme-catalyzed synthesis of sialyl oligosaccharide with in situ regeneration of CMP-sialic acid , 1991 .

[63]  A. Varki Multiple changes in sialic acid biology during human evolution , 2008, Glycoconjugate Journal.

[64]  Chi‐Huey Wong,et al.  The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the α-Glycosylation of Primary Hydroxy Groups. , 2001, Angewandte Chemie.

[65]  G. Boons,et al.  A Novel Direct Glycosylation Approach for the Synthesis of Dimers of N‐Acetylneuraminic Acid , 1999 .

[66]  H. Takematsu,et al.  Human B-lymphocytes Express α2-6-Sialylated 6-Sulfo-N-acetyllactosamine Serving as a Preferred Ligand for CD22/Siglec-2* , 2007, Journal of Biological Chemistry.

[67]  Maureen E. Taylor,et al.  Paradigms for glycan-binding receptors in cell adhesion. , 2007, Current opinion in cell biology.

[68]  David F. Smith,et al.  Changes of the receptor-binding properties of influenza B virus B/Victoria/504/2000 during adaptation in chicken eggs. , 2009, Virology.

[69]  X. Chen,et al.  The Hd0053 gene of Haemophilus ducreyi encodes an α2,3-sialyltransferase , 2007 .

[70]  Mark von Itzstein,et al.  The war against influenza: discovery and development of sialidase inhibitors. , 2007, Nature reviews. Drug discovery.

[71]  V. Nizet,et al.  Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. , 2009, Blood.

[72]  Hai Yu,et al.  A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. , 2005, Journal of the American Chemical Society.

[73]  M. Kiefel,et al.  Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. , 2002, Chemical reviews.

[74]  D. Koshland,et al.  A Small-Molecule Modulator of Poly-α2,8-Sialic Acid Expression on Cultured Neurons and Tumor Cells , 2001, Science.

[75]  A. Varki Sialic acids in human health and disease. , 2008, Trends in molecular medicine.

[76]  S. Fort,et al.  Biosynthesis of conjugatable saccharidic moieties of GM2 and GM3 gangliosides by engineered E. coli. , 2005, Chemical communications.

[77]  Xi Chen,et al.  Surface plasmon resonance study of protein-carbohydrate interactions using biotinylated sialosides. , 2008, Analytical chemistry.

[78]  Xi Chen,et al.  Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida. , 2006, Biochemistry.

[79]  A. Varki,et al.  Chemical Diversity in the Sialic Acids and Related α-Keto Acids: An Evolutionary Perspective , 2002 .

[80]  Chi-Huey Wong,et al.  Chemical‐Enzymatic Synthesis and Conformational Analysis of Sialyl Lewis x and Derivatives. , 1993 .

[81]  S. Ram,et al.  A Novel Sialic Acid Binding Site on Factor H Mediates Serum Resistance of Sialylated Neisseria gonorrhoeae , 1998, The Journal of experimental medicine.

[82]  Takeshi Yamamoto,et al.  Molecular Cloning, Expression and Properties of an α/β-Galactoside α2,3-Sialyltransferase from Vibrio sp. JT-FAJ-16 , 2007 .

[83]  A. Varki,et al.  ABO blood group glycans modulate sialic acid recognition on erythrocytes. , 2009, Blood.

[84]  Chi‐Huey Wong,et al.  The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the alpha-Glycosylation of Primary Hydroxy Groups This research was supported by Academia Sinica (Taipei) and the NIH (USA). , 2001, Angewandte Chemie.

[85]  Shih-Hsiung Wu,et al.  Synthesis of a Sialic Acid Dimer Derivative, 2‘α-O-Benzyl Neu5Ac-α-(2→5)Neu5Gc , 2002 .

[86]  Harshal A. Chokhawala,et al.  Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural alpha-2,6-linked sialosides: a P. damsela alpha-2,6-sialyltransferase with extremely flexible donor-substrate specificity. , 2006, Angewandte Chemie.

[87]  K. M. Koeller,et al.  Expression of alpha2,8/2,9-polysialyltransferase from Escherichia coli K92. Characterization of the enzyme and its reaction products. , 1999, The Journal of biological chemistry.

[88]  J. Cole,et al.  Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. , 1995, Microbial pathogenesis.

[89]  J. Brisson,et al.  Identification of a lipopolysaccharide α‐2,3‐sialyltransferase from Haemophilus influenzae , 2001, Molecular microbiology.

[90]  M. Kris,et al.  Vaccination of Small Cell Lung Cancer Patients with Polysialic Acid or N-Propionylated Polysialic Acid Conjugated to Keyhole Limpet Hemocyanin , 2004, Clinical Cancer Research.

[91]  Takashi Takahashi,et al.  An efficient convergent synthesis of GP1c ganglioside epitope. , 2008, Journal of the American Chemical Society.

[92]  G. Boons,et al.  A stereoselective approach for the synthesis of alpha-sialosides. , 2001, The Journal of organic chemistry.

[93]  Andrew G. Watts,et al.  Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog , 2004, Nature Structural &Molecular Biology.

[94]  A. Varki,et al.  Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. , 2009, Blood.

[95]  Andrew G. Watts,et al.  Kinetic and mechanistic analysis of Trypanosoma cruzi trans-sialidase reveals a classical ping-pong mechanism with acid/base catalysis. , 2008, Biochemistry.

[96]  A. Varki,et al.  Efficient chemoenzymatic synthesis of biotinylated human serum albumin-sialoglycoside conjugates containing O-acetylated sialic acids. , 2007, Organic & biomolecular chemistry.

[97]  Biao Yu,et al.  Efficient sialylation with phenyltrifluoroacetimidates as leaving groups. , 2003, Organic letters.

[98]  A. Varki,et al.  Selectin ligands. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Varki,et al.  Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression , 2008, Proceedings of the National Academy of Sciences.

[100]  B. Priem,et al.  A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria. , 2002, Glycobiology.

[101]  M. Gilbert,et al.  Cloning of the Lipooligosaccharide α-2,3-Sialyltransferase from the Bacterial Pathogens Neisseria meningitidis and Neisseria gonorrhoeae* , 1996, The Journal of Biological Chemistry.

[102]  C. Dumon,et al.  Production of Lewis x Tetrasaccharides by Metabolically Engineered Escherichia coli , 2006, Chembiochem : a European journal of chemical biology.

[103]  Takashi Takahashi,et al.  Stereoselective Synthesis of Oligo-α-(2,8)-Sialic Acids , 2006 .

[104]  Bernard Henrissat,et al.  An evolving hierarchical family classification for glycosyltransferases. , 2003, Journal of molecular biology.

[105]  R. Mizanur,et al.  Cloning and characterization of a heat-stable CMP-N-acylneuraminic acid synthetase from Clostridium thermocellum , 2007, Applied Microbiology and Biotechnology.

[106]  E. Vimr,et al.  Diversity of Microbial Sialic Acid Metabolism , 2004, Microbiology and Molecular Biology Reviews.

[107]  Xuefei Huang,et al.  Pre-activation-based one-pot synthesis of an alpha-(2,3)-sialylated core-fucosylated complex type bi-antennary N-glycan dodecasaccharide. , 2008, Chemistry.

[108]  R. Halcomb,et al.  RECENT DEVELOPMENTS IN TECHNOLOGY FOR GLYCOSYLATION WITH SIALIC ACID , 2002 .

[109]  T Corfield,et al.  Bacterial sialidases--roles in pathogenicity and nutrition. , 1992, Glycobiology.

[110]  S. Withers,et al.  Structural insight into mammalian sialyltransferases , 2009, Nature Structural &Molecular Biology.

[111]  Harshal A. Chokhawala,et al.  High‐Throughput Substrate Specificity Studies of Sialidases by Using Chemoenzymatically Synthesized Sialoside Libraries , 2007, Chembiochem : a European journal of chemical biology.

[112]  Nicolai V Bovin,et al.  Glycan Array Screening Reveals a Candidate Ligand for Siglec-8* , 2005, Journal of Biological Chemistry.

[113]  Takeshi Yamamoto,et al.  Purification, Cloning, and Expression of an α/β-Galactoside α-2,3-Sialyltransferase from a Luminous Marine Bacterium, Photobacterium phosphoreum* , 2007, Journal of Biological Chemistry.

[114]  J. Kamerling,et al.  Migration of O-acetyl groups in N,O-acetylneuraminic acids. , 1987, European journal of biochemistry.

[115]  Andrew G. Watts,et al.  Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. , 2004, Structure.

[116]  G. Air,et al.  Evolving complexities of influenza virus and its receptors. , 2008, Trends in microbiology.

[117]  J. Paulson,et al.  Combined use of trans-sialidase and sialyltransferase for enzymatic synthesis of .alpha.NeuAc2.fwdarw.3.beta.Gal-OCH2CH2SiMe3 , 1993 .

[118]  W. Reutter,et al.  Biochemical Engineering of Neural Cell Surfaces by the SyntheticN-Propanoyl-substituted Neuraminic Acid Precursor* , 1998, The Journal of Biological Chemistry.

[119]  Yinghong Gao,et al.  The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/sialyltransferase fusion , 1998, Nature Biotechnology.

[120]  Hualiang Jiang,et al.  Efficient dehydrative sialylation of C-4-aminated sialyl-hemiketal donors with Ph2SO/Tf2O. , 2009, The Journal of organic chemistry.

[121]  G. Boons,et al.  A Stereoselective Approach for the Synthesis of α‐Sialosides. , 2001 .

[122]  M. Kiso,et al.  1,5-Lactamized sialyl acceptors for various disialoside syntheses: novel method for the synthesis of glycan portions of Hp-s6 and HLG-2 gangliosides. , 2005, Angewandte Chemie.

[123]  Harshal A. Chokhawala,et al.  Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. , 2008, Glycobiology.

[124]  C. Harding,et al.  Preparation and immunological studies of protein conjugates of N-acylneuraminic acids , 2003, Glycoconjugate Journal.

[125]  Takeshi Yamamoto,et al.  Crystal structure of Vibrionaceae Photobacterium sp. JT-ISH-224 alpha2,6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose: catalytic mechanism and substrate recognition. , 2007, Glycobiology.

[126]  R. Kannagi,et al.  The First Total Synthesis of 6-Sulfo-de-N-acetylsialyl Lewis(x) Ganglioside: A Superior Ligand for Human L-Selectin. , 1999, Angewandte Chemie.

[127]  A. Varki,et al.  The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. , 1984, Analytical biochemistry.

[128]  Ajit Varki,et al.  Siglecs and their roles in the immune system , 2007, Nature Reviews Immunology.

[129]  M. Gilbert,et al.  Ready access to sialylated oligosaccharide donors. , 2000, Organic letters.

[130]  B. Priem,et al.  Large‐Scale In Vivo Synthesis of the Carbohydrate Moieties of Gangliosides GM1 and GM2 by Metabolically Engineered Escherichia coli , 2003, Chembiochem : a European journal of chemical biology.

[131]  R. Cummings,et al.  Role of PSGL-1 binding to selectins in leukocyte recruitment. , 1997, The Journal of clinical investigation.

[132]  Wenjun Li,et al.  α-Selective Sialylations at −78 °C in Nitrile Solvents with a 1-Adamantanyl Thiosialoside , 2007 .

[133]  J. Esko,et al.  Fucosylation of Disaccharide Precursors of Sialyl LewisX Inhibit Selectin-mediated Cell Adhesion* , 1997, The Journal of Biological Chemistry.

[134]  B. Gibson,et al.  Haemophilus influenzae Type b Strain A2 Has Multiple Sialyltransferases Involved in Lipooligosaccharide Sialylation* , 2002, The Journal of Biological Chemistry.

[135]  Roland Schauer,et al.  Sialic acids as regulators of molecular and cellular interactions , 2009, Current Opinion in Structural Biology.

[136]  B. Coddeville,et al.  Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus. , 2009, Carbohydrate research.

[137]  A. Ozaki,et al.  Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling , 2000, Applied Microbiology and Biotechnology.

[138]  T. A. Fritz,et al.  Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal beta 1-->4GlcNAc beta-O-naphthalenemethanol. , 1995, Proceedings of the National Academy of Sciences of the United States of America.