Pannexin1 links lymphatic function to lipid metabolism and atherosclerosis

[1]  S. Schwartz Faculty Opinions recommendation of Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[2]  T. Petrova,et al.  High-resolution 3D analysis of mouse small-intestinal stroma , 2016, Nature Protocols.

[3]  E. Brinton Management of Hypertriglyceridemia for Prevention of Atherosclerotic Cardiovascular Disease. , 2016, Endocrinology and metabolism clinics of North America.

[4]  K. Alitalo,et al.  Lymphatic System in Cardiovascular Medicine. , 2016, Circulation research.

[5]  O. Dormond,et al.  DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. , 2015, The Journal of clinical investigation.

[6]  R. Krams,et al.  Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37. , 2015, Atherosclerosis.

[7]  B. Luo,et al.  Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats , 2015, Neuroscience.

[8]  K. Stokes,et al.  Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation , 2015, Nature Communications.

[9]  D. Bayliss,et al.  Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes , 2015, Molecular metabolism.

[10]  B. Kwak,et al.  Role of connexins and pannexins in cardiovascular physiology , 2015, Cellular and Molecular Life Sciences.

[11]  Laura S. Shankman,et al.  Correction: Corrigendum: KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis , 2015, Nature Medicine.

[12]  Laura S. Shankman,et al.  KLF4 Dependent Phenotypic Modulation of SMCs Plays a Key Role in Atherosclerotic Plaque Pathogenesis , 2015, Nature Medicine.

[13]  K. Alitalo,et al.  Nonvenous origin of dermal lymphatic vasculature. , 2015, Circulation research.

[14]  H. Monyer,et al.  Functional role of a polymorphism in the Pannexin1 gene in collageninduced platelet aggregation , 2015, Thrombosis and Haemostasis.

[15]  M. Idzko,et al.  Purinergic signaling in atherosclerosis. , 2015, Trends in molecular medicine.

[16]  B. Kwak,et al.  Lymphatic vessels: an emerging actor in atherosclerotic plaque development , 2015, European journal of clinical investigation.

[17]  R. Virmani,et al.  Biomechanical factors in atherosclerosis: mechanisms and clinical implications. , 2014, European heart journal.

[18]  D. Laird,et al.  Pannexin channels and their links to human disease. , 2014, The Biochemical journal.

[19]  R. Bals,et al.  Probenecid reduces infection and inflammation in acute Pseudomonas aeruginosa pneumonia. , 2014, International journal of medical microbiology : IJMM.

[20]  W. Reith,et al.  Lymph node stromal cells acquire peptide–MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance , 2014, The Journal of experimental medicine.

[21]  K. Alitalo,et al.  Lymphatic Vessel Insufficiency in Hypercholesterolemic Mice Alters Lipoprotein Levels and Promotes Atherogenesis , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[22]  G. Randolph Mechanisms that regulate macrophage burden in atherosclerosis. , 2014, Circulation research.

[23]  F. Mach,et al.  Endothelial Cx40 limits myocardial ischaemia/reperfusion injury in mice. , 2014, Cardiovascular research.

[24]  N. Leitinger,et al.  The role of pannexin1 in the induction and resolution of inflammation , 2014, FEBS letters.

[25]  E. Falk,et al.  Stabilization of atherosclerotic plaques: an update. , 2013, European heart journal.

[26]  P. Libby,et al.  Immune effector mechanisms implicated in atherosclerosis: from mice to humans. , 2013, Immunity.

[27]  Sunhee C. Lee,et al.  Contribution of Pannexin1 to Experimental Autoimmune Encephalomyelitis , 2013, PloS one.

[28]  Yi Luo,et al.  Pannexin-1 influences peritoneal cavity cell population but is not involved in NLRP3 inflammasome activation , 2013, Protein & Cell.

[29]  Robert Bittman,et al.  Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. , 2013, The Journal of clinical investigation.

[30]  A. Charollais,et al.  Promises and pitfalls of a Pannexin1 transgenic mouse line , 2013, Front. Pharmacol..

[31]  M. Billaud,et al.  Mechanisms of ATP release and signalling in the blood vessel wall. , 2012, Cardiovascular research.

[32]  H. Monyer,et al.  Pannexins in ischemia-induced neurodegeneration , 2011, Proceedings of the National Academy of Sciences.

[33]  J. Velíšková,et al.  Targeting Pannexin1 Improves Seizure Outcome , 2011, PloS one.

[34]  M. Bajénoff,et al.  Cutting Edge: JAM-C Controls Homeostatic Chemokine Secretion in Lymph Node Fibroblastic Reticular Cells Expressing Thrombomodulin , 2011, The Journal of Immunology.

[35]  G. Dubyak,et al.  Pannexin-1 Is Required for ATP Release during Apoptosis but Not for Inflammasome Activation , 2011, The Journal of Immunology.

[36]  Michael R. Elliott,et al.  Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis , 2010, Nature.

[37]  Sai T Reddy,et al.  Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. , 2009, The American journal of pathology.

[38]  K. Alitalo,et al.  Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation , 2007, Nature Medicine.

[39]  M. Cybulsky,et al.  Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis , 2006, The Journal of experimental medicine.

[40]  Thomas Christen,et al.  Connexin37 protects against atherosclerosis by regulating monocyte adhesion , 2006, Nature Medicine.

[41]  F. Grosveld,et al.  Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress , 2006, Circulation.

[42]  F. Mach,et al.  Differential Expression Patterns of Proinflammatory and Antiinflammatory Mediators During Atherogenesis in Mice , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[43]  F. Kittrell,et al.  From Mice to Humans , 2004, Cancer Research.

[44]  Thomas N. Sato,et al.  Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  V. Fuster,et al.  Coronary plaque disruption. , 1995, Circulation.

[46]  N. Maeda,et al.  Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. , 1992, Science.

[47]  G. Gabbiani,et al.  A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation , 1986, The Journal of cell biology.

[48]  F. Mach,et al.  Endothelial Cx 40 limits myocardial ischaemia / reperfusion injury in mice , 2014 .

[49]  K. Johnson An Update. , 1984, Journal of food protection.