Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals

AbstractWe study semicontinuity of multiple integrals ∫Ωf(x,u,Du) dx, where the vector-valued function u is defined for $$x \varepsilon \Omega \subset \mathbb{R}^n $$ with values in ℝN. The function f(x,s,ξ) is assumed to be Carathéodory and quasiconvex in Morrey's sense. We give conditions on the growth of f that guarantee the sequential lower semicontinuity of the given integral in the weak topology of the Sobolev space H1,p(ΩℝN). The proofs are based on some approximation results for f. In particular we can approximate f by a nondecreasing sequence of quasiconvex functions, each of them beingconvex andindependent of (x,s) for large values of ξ. In the special polyconvex case, for example if n=N and f(Du) is equal to a convex function of the Jacobian detDu, then we obtain semicontinuity in the weak topology of H1,p(Ωℝn) for small p, in particular for some p smaller than n.

[1]  James Serrin,et al.  On the definition and properties of certain variational integrals , 1961 .

[2]  J. C. Currie,et al.  Weak continuity and variational problems of arbitrary order , 1981 .

[3]  J. Ball,et al.  W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .

[4]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[5]  Nicola Fusco,et al.  Semicontinuity problems in the calculus of variations , 1984 .

[6]  Paolo Marcellini,et al.  Quasiconvex quadratic forms in two dimensions , 1984 .

[7]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[8]  Stuart S. Antman,et al.  The influence of elasticity on analysis: Modern developments , 1983 .

[9]  Goswin Eisen,et al.  A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals , 1979 .

[10]  Goswin Eisen A counterexample for some lower semicontinuity results , 1978 .

[11]  Yu. G. Reshetnyak Stability theorems for mappings with bounded excersions , 1968 .

[12]  Paolo Marcellini,et al.  Semicontinuity problems in the calculus of variations , 1980 .

[13]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[14]  Yu. G. Reshetnyak General theorems on semicontinuity and on convergence with a functional , 1967 .

[15]  Bernard Dacorogna,et al.  Quasiconvexity and relaxation of nonconvex problems in the calculus of variations , 1982 .

[16]  F. Murat,et al.  Compacité par compensation , 1978 .

[17]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[18]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[19]  N. Meyers QUASI-CONVEX1TY AND LOWER SEMI-CONTINUITY OF MULTIPLE VARIATIONAL INTEGRALS OF ANY ORDER , 2010 .

[20]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[21]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[22]  I. Ekeland Nonconvex minimization problems , 1979 .

[23]  Enrico Giusti,et al.  On the regularity of the minima of variational integrals , 1982 .