Recurrence Relations and Splitting Formulas for the Domination Polynomial

The domination polynomial $D(G,x)$ of a graph $G$ is the generating function of its dominating sets. We prove that $D(G,x)$ satisfies a wide range of reduction formulas. We show linear recurrence relations for $D(G,x)$ for arbitrary graphs and for various special cases. We give splitting formulas for $D(G,x)$ based on articulation vertices, and more generally, on splitting sets of vertices.

[1]  Johann A. Makowsky,et al.  From a Zoo to a Zoology: Towards a General Theory of Graph Polynomials , 2008, Theory of Computing Systems.

[2]  F. Harary,et al.  On the corona of two graphs , 1970 .

[3]  S. Alikhani Graphs which their certain polynomials have few distinct roots- a survey , 2011, 1112.0838.

[4]  Vadim E. Levit,et al.  The independence polynomial of a graph - a survey , 2005 .

[5]  Bernardo Llano,et al.  Mean value for the matching and dominating polynomial , 2000, Discuss. Math. Graph Theory.

[6]  S. Akbari,et al.  The Domination Polynomials of Cubic graphs of order 10 , 2009, 0905.3281.

[7]  Saeid Alikhani On the graphs with four distinct domination roots , 2011, Int. J. Comput. Math..

[8]  Saeid Alikhani,et al.  Dominating Sets and Domination Polynomials of Paths , 2009, Int. J. Math. Math. Sci..

[9]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[10]  Peter Tittmann,et al.  Domination Reliability , 2011, Electron. J. Comb..

[11]  I. Gutman,et al.  On the theory of the matching polynomial , 1981, J. Graph Theory.

[12]  Johann A. Makowsky,et al.  An extension of the bivariate chromatic polynomial , 2010, Eur. J. Comb..

[13]  Saieed Akbari,et al.  Characterization of graphs using domination polynomials , 2010, Eur. J. Comb..

[14]  Saeid Alikhani,et al.  Dominating sets and domination polynomials of certain graphs, II , 2010 .

[15]  Saeid Alikhani,et al.  Introduction to Domination Polynomial of a Graph , 2014, Ars Comb..