Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations

The numerical investigation of a recent family of algebraic fractional-step methods for the solution of the incompressible time-dependent Navier-Stokes equations is presented. These methods are improved versions of the Yosida method proposed in [A. Quarteroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations Comput. Methods Appl. Mech. Engrg. 188(1-3) (2000) 505-526; A. Quarteroni, F. Saleri, A. Veneziani, J. Math. Pures Appl. (9), 78(5) (1999) 473-503] and one of them (the Yosida4 method) is proposed in this paper for the first time. They rely on an approximate LU block factorization of the matrix obtained after the discretization in time and space of the Navier-Stokes system, yielding a splitting in the velocity and pressure computation. In this paper, we analyze the numerical performances of these schemes when the space discretization is carried out with a spectral element method, with the aim of investigating the impact of the splitting on the global accuracy of the computation.

[1]  Roland Glowinski,et al.  Splitting Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. , 1984 .

[2]  Paul Fischer,et al.  Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .

[3]  Alfio Quarteroni,et al.  Finite element preconditioning for legendre spectral collocation approximations to elliptic equations and systems , 1992 .

[4]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[5]  G. Marchuk Splitting and alternating direction methods , 1990 .

[6]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[7]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[8]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[9]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[10]  Michel O. Deville,et al.  Finite-Element Preconditioning for Pseudospectral Solutions of Elliptic Problems , 1990, SIAM J. Sci. Comput..

[11]  F. Saleri,et al.  A fast preconditioner for the incompressible Navier Stokes Equations , 2004 .

[12]  W. Couzy,et al.  Spectral element discretization of the unsteady Navier-Stokes equations and its iterative solution on parallel computers , 1995 .

[13]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[14]  A. Veneziani Block factorized preconditioners for high‐order accurate in time approximation of the Navier‐Stokes equations , 2003 .

[15]  C. Bernardi,et al.  Approximations spectrales de problèmes aux limites elliptiques , 2003 .

[16]  Reimund Rautmann,et al.  The Navier-Stokes Equations II — Theory and Numerical Methods , 1992 .

[17]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[18]  S. Turek On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmical approach , 1997 .

[19]  A. Quarteroni,et al.  Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .

[20]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[21]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[22]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[23]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[24]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[25]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[26]  Alessandro Veneziani,et al.  Pressure Correction Algebraic Splitting Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[27]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[28]  Paola Gervasio,et al.  Algebraic Fractional-Step Schemes for Time-Dependent Incompressible Navier–Stokes Equations , 2006, J. Sci. Comput..

[29]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[30]  O. Widlund,et al.  Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .

[31]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[32]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[33]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .

[34]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[35]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[36]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[37]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[38]  Alfio Quarteroni,et al.  Analysis of the Yosida Method for the Incompressible Navier-Stokes Equations , 1999 .

[39]  Jens Kristian Holmen,et al.  Algebraic splitting for incompressible Navier-Stokes equations , 2002 .

[40]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[41]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[42]  John C. Strikwerda,et al.  The Accuracy of the Fractional Step Method , 1999, SIAM J. Numer. Anal..

[43]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[44]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..