Unconditionally energy stable time stepping scheme for Cahn-Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

An unconditionally energy stable time stepping scheme is introduced to solve Cahn-Morral-like equations in the present study. It is constructed based on the combination of David Eyre's time stepping scheme and Schur complement approach. Although the presented method is general and independent of the choice of homogeneous free energy density function term, logarithmic and polynomial energy functions are specifically considered in this paper. The method is applied to study the spinodal decomposition in multi-component systems and optimal space tiling problems. A penalization strategy is developed, in the case of later problem, to avoid trivial solutions. Extensive numerical experiments demonstrate the success and performance of the presented method. According to the numerical results, the method is convergent and energy stable, independent of the choice of time stepsize. Its MATLAB implementation is included in the appendix for the numerical evaluation of algorithm and reproduction of the presented results. Extension of Eyre's convex-concave splitting scheme to multiphase systems.Efficient solution of spinodal decomposition in multi-component systems.Efficient solution of least perimeter periodic space partitioning problem.Developing a penalization strategy to avoid trivial solutions.Presentation of MATLAB implementation of the introduced algorithm.

[1]  Peter Benner,et al.  Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements , 2014, J. Comput. Phys..

[2]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[3]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[4]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[5]  Martin Stoll,et al.  Preconditioning for Allen-Cahn variational inequalities with non-local constraints , 2012, J. Comput. Phys..

[6]  Harald Garcke,et al.  On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .

[7]  U. Hechta,et al.  Multiphase solidification in multicomponent alloys , 2004 .

[8]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[9]  Nauman Raza,et al.  Numerical approximation of time evolution related to Ginzburg-Landau functionals using weighted Sobolev gradients , 2014, Comput. Math. Appl..

[10]  Édouard Oudet,et al.  Approximation of Partitions of Least Perimeter by Γ-Convergence: Around Kelvin’s Conjecture , 2011, Exp. Math..

[11]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[12]  Benedikt Wirth,et al.  A simple and efficient scheme for phase field crystal simulation , 2013 .

[13]  G. Tierra,et al.  Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models , 2015 .

[14]  John W. Barrett,et al.  An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix , 2001, Numerische Mathematik.

[15]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[16]  Maya Neytcheva,et al.  Efficient numerical solution of discrete multi-component Cahn-Hilliard systems , 2014, Comput. Math. Appl..

[17]  Y. Suwa,et al.  Kinetics of phase separation in iron-based ternary alloys. II. Numerical simulation of phase separation in Fe–Cr–X(X=Mo, Cu) ternary alloys , 2003 .

[18]  Harald Garcke,et al.  Allen-Cahn systems with volume constraints , 2008 .

[19]  Andrea Lamorgese,et al.  Phase Field Approach to Multiphase Flow Modeling , 2011 .

[20]  Harald Garcke,et al.  Phase-field model for multiphase systems with preserved volume fractions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  John W. Barrett,et al.  Finite element approximation of a model for phase separation of a multi-component alloy with a concentration-dependent mobility matrix , 1998 .

[22]  T. Abinandanan,et al.  A study of phase separation in ternary alloys , 2003 .

[23]  Long-Qing Chen Computer simulation of spinodal decomposition in ternary systems , 1994 .

[24]  Zhi-Zhong Sun,et al.  Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection , 2014, Math. Comput..

[25]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[26]  David Andrs,et al.  A quantitative comparison between C0 and C1 elements for solving the Cahn-Hilliard equation , 2013, J. Comput. Phys..

[27]  Cheng Wang,et al.  A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.

[28]  B. Nestler,et al.  Phase-field modeling of multi-component systems , 2011 .

[29]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[30]  E. Mello,et al.  Numerical study of the Cahn–Hilliard equation in one, two and three dimensions , 2004, cond-mat/0410772.

[31]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[32]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[33]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[34]  Rouhollah Tavakoli,et al.  Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation , 2014 .

[35]  Rouhollah Tavakoli,et al.  Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method , 2014 .

[36]  Jeffrey J. Hoyt,et al.  The continuum theory of nucleation in multicomponent systems , 1990 .

[37]  Cheng Wang,et al.  Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations , 2014, J. Comput. Phys..

[38]  Charles M. Elliott,et al.  Numerical analysis of a model for phase separation of a multi- component alloy , 1996 .

[39]  James A. Warren,et al.  An efficient algorithm for solving the phase field crystal model , 2008, J. Comput. Phys..

[40]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[41]  Junseok Kim,et al.  A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system , 2008 .

[42]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[43]  Shahid S. Siddiqi,et al.  Approximating time evolution related to Ginzburg-Landau functionals via Sobolev gradient methods in a finite-element setting , 2010, J. Comput. Phys..

[44]  D. de Fontaine,et al.  An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria , 1972 .

[45]  Irina Singer-Loginova,et al.  The phase field technique for modeling multiphase materials , 2008 .

[46]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[47]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[48]  Evelyn Sander,et al.  The Dynamics of Nucleation in Stochastic Cahn-Morral Systems , 2011, SIAM J. Appl. Dyn. Syst..

[49]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[50]  Shahid S. Siddiqi,et al.  Sobolev gradient approach for the time evolution related to energy minimization of Ginzburg-Landau functionals , 2009, J. Comput. Phys..

[51]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[52]  J. Kirkaldy A Ginzburg-Landau treatment of ternary spinodal decomposition , 2000 .

[53]  Franck Boyer,et al.  Numerical schemes for a three component Cahn-Hilliard model , 2011 .

[54]  John W. Cahn,et al.  Spinodal decomposition in ternary systems , 1971 .

[55]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[56]  Zhonghua Qiao,et al.  An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation , 2012 .

[57]  J. E. Hilliard,et al.  Spinodal decomposition: A reprise , 1971 .

[58]  Yoshiyuki Saito,et al.  Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation , 2000 .

[59]  D. Fontaine An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics , 1973 .

[60]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[61]  Paul C. Fife,et al.  Models for phase separation and their mathematics. , 2000 .

[62]  J. Hoyt Linear spinodal decomposition in a regular ternary alloy , 1990 .

[63]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[64]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[65]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[66]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[67]  Jie Shen,et al.  Efficient energy stable numerical schemes for a phase field moving contact line model , 2015, J. Comput. Phys..

[68]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[69]  T. Lookman,et al.  Energy minimization using Sobolev gradients: application to phase separation and ordering , 2003 .

[70]  S. J. Cox,et al.  The Minimal Perimeter for N Confined Deformable Bubbles of Equal Area , 2010, Electron. J. Comb..

[71]  Jaemin Shin,et al.  Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation , 2014 .

[72]  Rouhollah Tavakoli Computationally efficient approach for the minimization of volume constrained vector-valued Ginzburg-Landau energy functional , 2015, J. Comput. Phys..

[73]  Junseok Kim,et al.  A practically unconditionally gradient stable scheme for the N-component Cahn-Hilliard system , 2012 .

[74]  John W. Barrett,et al.  Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1997 .

[75]  Ralf Kornhuber,et al.  Nonsmooth Schur–Newton methods for multicomponent Cahn–Hilliard systems , 2015 .

[76]  Christian Fabry,et al.  Resonance with respect to the Fucik spectrum , 2000 .

[77]  David J. Eyre,et al.  Systems of Cahn-Hilliard Equations , 1993, SIAM J. Appl. Math..

[78]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[79]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[80]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[81]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[82]  John W. Barrett,et al.  An Error Bound for the Finite Element Approximation of a Model for Phase Separation of a Multi-Compo , 1996 .

[83]  M. I. M. Copetti Numerical experiments of phase separation in ternary mixtures , 2000 .

[84]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.