Effect of anisotropy on phononic band structure and figure of merit of pentamode metamaterials

We propose herein four types of anisotropic pentamode metamaterials (PMs) created by shifting the thin-end contention points along the space-diagonal, x-axis, y-axis, and z-axis directions. The phononic band structure and figure of merit (FOM) of the four types of anisotropic PMs are systematically investigated by using the finite-element method. Compared with isotropic PMs, the first phononic bandgaps appear in low-frequency regions, and the FOM increases by a factor of 6.9 when the thin-end connection area shifts along the z-axis direction. This study investigates how anisotropy affects PM properties and provides a reference to design acoustic cloaks, acoustic waveguides, and acoustic barriers.

[1]  X. Tian,et al.  Pentamode metamaterials with asymmetric double-cone elements , 2015 .

[2]  Shi-ning Zhu,et al.  Metamaterials: artificial materials beyond nature , 2018 .

[3]  Martin Wegener,et al.  Pentamode metamaterials with independently tailored bulk modulus and mass density , 2014, 1407.4894.

[4]  Han Jia,et al.  Design of an underwater acoustic bend by pentamode metafluid. , 2017, The Journal of the Acoustical Society of America.

[5]  Zhuo Xu,et al.  Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes , 2016 .

[6]  M. Wegener,et al.  On three-dimensional dilational elastic metamaterials , 2013, 1310.3719.

[7]  N. Fang,et al.  Breaking the barriers: advances in acoustic functional materials , 2018 .

[8]  Gengkai Hu,et al.  Design of arbitrary shaped pentamode acoustic cloak based on quasi-symmetric mapping gradient algorithm. , 2016, The Journal of the Acoustical Society of America.

[9]  C. Scandrett,et al.  Acoustic cloaking using layered pentamode materials. , 2010, The Journal of the Acoustical Society of America.

[10]  A. Norris,et al.  Acoustic metafluids. , 2008, The Journal of the Acoustical Society of America.

[11]  Chengxin Cai,et al.  Tuning method of phononic band gaps of locally resonant pentamode metamaterials , 2018, Journal of Physics D: Applied Physics.

[12]  Zhuo Xu,et al.  Phonon band structures of the three dimensional latticed pentamode metamaterials , 2017 .

[13]  Ye Tian,et al.  Broadband manipulation of acoustic wavefronts by pentamode metasurface , 2015 .

[14]  M. Wegener,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[15]  Sound velocity anisotropy in cubic crystals , 1983 .

[16]  C. Scandrett,et al.  Broadband optimization of a pentamode-layered spherical acoustic waveguide , 2011 .

[17]  Gengkai Hu,et al.  Latticed pentamode acoustic cloak , 2015, Scientific Reports.

[18]  Scattering reduction of an acoustically hard cylinder covered with layered pentamode metamaterials. , 2011, The Journal of the Acoustical Society of America.

[19]  Martin Wegener,et al.  On the feasibility of pentamode mechanical metamaterials , 2012 .

[20]  T. Cui,et al.  Microwave Metamaterials , 2019, Annalen der Physik.

[21]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[22]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[23]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[24]  A. Norris Acoustic cloaking theory , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.