Robust Compressive Phase Retrieval via Deep Generative Priors

This paper proposes a new framework to regularize the highly ill-posed and non-linear phase retrieval problem through deep generative priors using simple gradient descent algorithm. We experimentally show effectiveness of proposed algorithm for random Gaussian measurements (practically relevant in imaging through scattering media) and Fourier friendly measurements (relevant in optical set ups). We demonstrate that proposed approach achieves impressive results when compared with traditional hand engineered priors including sparsity and denoising frameworks for number of measurements and robustness against noise. Finally, we show the effectiveness of the proposed approach on a real transmission matrix dataset in an actual application of multiple scattering media imaging.

[1]  Chinmay Hegde,et al.  Fast, Sample-Efficient Algorithms for Structured Phase Retrieval , 2017, NIPS.

[2]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[3]  Aggelos K. Katsaggelos,et al.  Ptychnet: CNN based fourier ptychography , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[4]  Sundeep Rangan,et al.  Compressive phase retrieval via generalized approximate message passing , 2012, Allerton Conference.

[5]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[6]  Yonina C. Eldar,et al.  Phase retrieval with masks using convex optimization , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[7]  Radu V. Balan,et al.  On signal reconstruction from its spectrogram , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[8]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[9]  Paul,et al.  Phase retrieval in quantum mechanics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[10]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[11]  Yonina C. Eldar,et al.  On Fienup Methods for Sparse Phase Retrieval , 2017, IEEE Transactions on Signal Processing.

[12]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[13]  Robert Beinert,et al.  Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem , 2016, ArXiv.

[14]  Ziyang Yuan,et al.  Phase Retrieval via Sparse Wirtinger Flow , 2017, J. Comput. Appl. Math..

[15]  L. Tian,et al.  3D intensity and phase imaging from light field measurements in an LED array microscope , 2015 .

[16]  Michael K. Ng,et al.  Phase Retrieval from Incomplete Magnitude Information via Total Variation Regularization , 2016, SIAM J. Sci. Comput..

[17]  Ali Ahmed,et al.  Solving Bilinear Inverse Problems using Deep Generative Priors , 2018, ArXiv.

[18]  M. Fink,et al.  Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations , 2014, Nature Photonics.

[19]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[20]  Allen Y. Yang,et al.  CPRL -- An Extension of Compressive Sensing to the Phase Retrieval Problem , 2012, NIPS.

[21]  Florent Krzakala,et al.  Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. , 2015, Optics express.

[22]  Chandra Sekhar Seelamantula,et al.  Fienup Algorithm With Sparsity Constraints: Application to Frequency-Domain Optical-Coherence Tomography , 2014, IEEE Transactions on Signal Processing.

[23]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[24]  Chinmay Hegde,et al.  Sample-Efficient Algorithms for Recovering Structured Signals From Magnitude-Only Measurements , 2017, IEEE Transactions on Information Theory.

[25]  G. Papanicolaou,et al.  Array imaging using intensity-only measurements , 2010 .

[26]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[27]  Richard G. Baraniuk,et al.  BM3D-PRGAMP: Compressive phase retrieval based on BM3D denoising , 2016, 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[28]  Kannan Ramchandran,et al.  PhaseCode: Fast and Efficient Compressive Phase Retrieval Based on Sparse-Graph Codes , 2017, IEEE Transactions on Information Theory.

[29]  Jonathan Krause,et al.  Collecting a Large-scale Dataset of Fine-grained Cars , 2013 .

[30]  Vladimir Katkovnik,et al.  Phase retrieval from noisy data based on sparse approximation of object phase and amplitude , 2017, ArXiv.

[31]  Chao Yang,et al.  Efficient Algorithms for Ptychographic Phase Retrieval , 2014 .

[32]  Karen O. Egiazarian,et al.  Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space , 2007, 2007 IEEE International Conference on Image Processing.

[33]  Axel Flinth,et al.  Phase Retrieval from Gabor Measurements , 2015, Journal of Fourier Analysis and Applications.

[34]  Wolfgang Heidrich,et al.  Low-budget transient imaging using photonic mixer devices , 2013, ACM Trans. Graph..

[35]  Ashok Veeraraghavan,et al.  Depth Selective Camera: A Direct, On-Chip, Programmable Technique for Depth Selectivity in Photography , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[36]  Irène Waldspurger,et al.  Phase Retrieval With Random Gaussian Sensing Vectors by Alternating Projections , 2016, IEEE Transactions on Information Theory.

[37]  Yonina C. Eldar,et al.  Non-Convex Phase Retrieval From STFT Measurements , 2016, IEEE Transactions on Information Theory.

[38]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[39]  Richard G. Baraniuk,et al.  Coherent inverse scattering via transmission matrices: Efficient phase retrieval algorithms and a public dataset , 2017, 2017 IEEE International Conference on Computational Photography (ICCP).

[40]  Florent Krzakala,et al.  Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[41]  Vladislav Voroninski,et al.  Phase Retrieval Under a Generative Prior , 2018, NeurIPS.

[42]  Gordon Wetzstein,et al.  ProxImaL , 2016, ACM Trans. Graph..

[43]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[44]  Gang Wang,et al.  Compressive Phase Retrieval via Reweighted Amplitude Flow , 2017, IEEE Transactions on Signal Processing.

[45]  Dustin G. Mixon,et al.  SUNLayer: Stable denoising with generative networks , 2018, ArXiv.

[46]  Bernhard G. Bodmann,et al.  Stable phase retrieval with low-redundancy frames , 2013, Adv. Comput. Math..

[47]  Laurent Daudet,et al.  Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium , 2013, Scientific Reports.

[48]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[49]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[50]  Andrew E. Yagle,et al.  Relaxation procedure for phase retrieval of nonnegative signals , 1994, IEEE Trans. Signal Process..

[51]  Alexandros G. Dimakis,et al.  Compressed Sensing using Generative Models , 2017, ICML.

[52]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[53]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[54]  Yonina C. Eldar,et al.  DOLPHIn—Dictionary Learning for Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[55]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[56]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[57]  Brendt Wohlberg,et al.  Plug-and-Play priors for model based reconstruction , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[58]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[59]  Sundeep Rangan,et al.  Vector approximate message passing for the generalized linear model , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[60]  Meng Cui Parallel wavefront optimization method for focusing light through random scattering media. , 2011, Optics letters.

[61]  Milad Bakhshizadeh,et al.  Compressive Phase Retrieval of Structured Signal , 2017, ArXiv.

[62]  Irène Waldspurger,et al.  Phase Retrieval for Wavelet Transforms , 2015, IEEE Transactions on Information Theory.

[63]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[64]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[65]  Yonina C. Eldar,et al.  Fourier Phase Retrieval: Uniqueness and Algorithms , 2017, ArXiv.