Computing the Permanent of (Some) Complex Matrices

We present a deterministic algorithm, which, for any given $$0< \epsilon < 1$$0<ϵ<1 and an $$n \times n$$n×n real or complex matrix $$A=\left( a_{ij}\right) $$A=aij such that $$\left| a_{ij}-1 \right| \le 0.19$$aij-1≤0.19 for all $$i, j$$i,j computes the permanent of $$A$$A within relative error $$\epsilon $$ϵ in $$n^{O\left( \ln n -\ln \epsilon \right) }$$nOlnn-lnϵ time. The method can be extended to computing hafnians and multidimensional permanents.

[1]  Martin Fürer Approximating permanents of complex matrices , 2000, STOC '00.

[2]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[3]  Leonid Gurvits,et al.  On the Complexity of Mixed Discriminants and Related Problems , 2005, MFCS.

[4]  Rekha R. Thomas,et al.  The euclidean distance degree , 2014, SNC.

[5]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[6]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[7]  Alexander I. Barvinok,et al.  Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.

[8]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[9]  Alexander I. Barvinok,et al.  Computing the Partition Function for Cliques in a Graph , 2014, Theory Comput..

[10]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[11]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[12]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2009, SIAM J. Comput..

[13]  L. Gurvits,et al.  Generalized Friedland-Tverberg inequality: applications and extensions , 2006, math/0603410.

[14]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[15]  Alex Samorodnitsky,et al.  Bounds on the Permanent and Some Applications , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[16]  Alexander I. Barvinok,et al.  Computing the partition function for graph homomorphisms , 2014, Comb..

[17]  Dmitriy Katz,et al.  A deterministic approximation algorithm for computing the permanent of a 0, 1 matrix , 2010, J. Comput. Syst. Sci..

[18]  Alexander I. Barvinok,et al.  Two Algorithmic Results for the Traveling Salesman Problem , 1996, Math. Oper. Res..

[19]  Alex Samorodnitsky,et al.  Computing the Partition Function for Perfect Matchings in a Hypergraph , 2011, Comb. Probab. Comput..

[20]  A. Scott,et al.  The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.