Cortical D1 and D2 dopamine receptor availability modulate methylphenidate-induced changes in brain activity and functional connectivity

[1]  R. Cools,et al.  Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine , 2021, Neuropsychopharmacology.

[2]  Pontus Plavén-Sigray,et al.  Low convergent validity of [11C]raclopride binding in extrastriatal brain regions: A PET study of within-subject correlations with [11C]FLB 457 , 2020, NeuroImage.

[3]  Dana E. Feldman,et al.  Brain Network Segregation and Glucose Energy Utilization: Relevance for Age-Related Differences in Cognitive Function. , 2020, Cerebral cortex.

[4]  Russell T. Shinohara,et al.  Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA , 2020, NeuroImage.

[5]  Heiko Backes,et al.  [11C]raclopride and extrastriatal binding to D2/3 receptors , 2019, NeuroImage.

[6]  S. Haber,et al.  Circuits, Networks, and Neuropsychiatric Disease: Transitioning From Anatomy to Imaging , 2019, Biological Psychiatry.

[7]  Lars Nyberg,et al.  High long-term test–retest reliability for extrastriatal 11C-raclopride binding in healthy older adults , 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  Ulman Lindenberger,et al.  Mapping the landscape of human dopamine D2/3 receptors with [11C]raclopride , 2019, Brain Structure and Function.

[9]  Jaime J. Castrellon,et al.  Mesolimbic dopamine D2 receptors and neural representations of subjective value , 2019, Scientific Reports.

[10]  Ruud L. van den Brink,et al.  Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations , 2019, Front. Hum. Neurosci..

[11]  Pontus Plavén-Sigray,et al.  Validity and reliability of extrastriatal [11C]raclopride binding quantification in the living human brain , 2019, NeuroImage.

[12]  Marc Tittgemeyer,et al.  Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. , 2019, Cell metabolism.

[13]  Nora D. Volkow,et al.  Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain , 2019, Nature Communications.

[14]  J. Rauschecker,et al.  Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting‐state FDG‐PET/fMRI study , 2019, Human brain mapping.

[15]  B. Feige,et al.  Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: a dimensional analysis of resting state fMRI , 2019, BMC Psychiatry.

[16]  M. Walton,et al.  Time-dependent assessment of stimulus-evoked regional dopamine release , 2019, Nature Communications.

[17]  Federico E. Turkheimer,et al.  Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles , 2018, NeuroImage.

[18]  Sanjiv S Gambhir,et al.  Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation , 2018, Translational Psychiatry.

[19]  Russell T. Shinohara,et al.  Harmonization of cortical thickness measurements across scanners and sites , 2017, NeuroImage.

[20]  Felix Carbonell,et al.  Posterior dopamine D2/3 receptors and brain network functional connectivity , 2017, Synapse.

[21]  Evan D. Morris,et al.  Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis , 2017, Neurobiology of Aging.

[22]  Ragini Verma,et al.  Harmonization of multi-site diffusion tensor imaging data , 2017, NeuroImage.

[23]  Karl Deisseroth,et al.  Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons , 2017, Neuropsychopharmacology.

[24]  Issue Information , 2017 .

[25]  Seong-Gi Kim,et al.  Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI , 2016, Molecular Psychiatry.

[26]  Peter R Murphy,et al.  Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional Connectivity in the Human Brain , 2016, The Journal of Neuroscience.

[27]  L. Nyberg,et al.  Dopamine D2 receptor availability is linked to hippocampal–caudate functional connectivity and episodic memory , 2016, Proceedings of the National Academy of Sciences.

[28]  Anais M. Rodriguez-Thompson,et al.  Dopamine D1 signaling organizes network dynamics underlying working memory , 2016, Science Advances.

[29]  N. D. Volkow,et al.  Temporal Changes in Local Functional Connectivity Density Reflect the Temporal Variability of the Amplitude of Low Frequency Fluctuations in Gray Matter , 2016, PloS one.

[30]  Ciprian Catana,et al.  Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI , 2016, Neuropsychopharmacology.

[31]  Matti Laine,et al.  Long-Term Test–Retest Reliability of Striatal and Extrastriatal Dopamine D2/3 Receptor Binding: Study with [11C]Raclopride and High-Resolution PET , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  Denise C. Park,et al.  Decreased segregation of brain systems across the healthy adult lifespan , 2014, Proceedings of the National Academy of Sciences.

[33]  H. Möller,et al.  The effects of methylphenidate on whole brain intrinsic functional connectivity , 2014, Human brain mapping.

[34]  Karl J. Friston,et al.  Local Activity Determines Functional Connectivity in the Resting Human Brain: A Simultaneous FDG-PET/fMRI Study , 2014, The Journal of Neuroscience.

[35]  T. Robbins,et al.  Improved short-term spatial memory but impaired reversal learning following the dopamine D2 agonist bromocriptine in human volunteers , 2001, Psychopharmacology.

[36]  Michael Angstadt,et al.  Distributed effects of methylphenidate on the network structure of the resting brain: A connectomic pattern classification analysis , 2013, NeuroImage.

[37]  Kicheon Park,et al.  Chronic Cocaine Dampens Dopamine Signaling during Cocaine Intoxication and Unbalances D1 over D2 Receptor Signaling , 2013, The Journal of Neuroscience.

[38]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[39]  N. Volkow,et al.  Energetic cost of brain functional connectivity , 2013, Proceedings of the National Academy of Sciences.

[40]  Bruce R. Rosen,et al.  A receptor-based model for dopamine-induced fMRI signal , 2013, NeuroImage.

[41]  J. Swanson,et al.  Association between Dopamine D4 Receptor Polymorphism and Age Related Changes in Brain Glucose Metabolism , 2013, PloS one.

[42]  Irene E. Nagel,et al.  Aging magnifies the effects of dopamine transporter and D2 receptor genes on backward serial memory , 2013, Neurobiology of Aging.

[43]  Lars Bäckman,et al.  Increased Bilateral Frontal Connectivity during Working Memory in Young Adults under the Influence of a Dopamine D1 Receptor Antagonist , 2012, The Journal of Neuroscience.

[44]  S. MacDonald,et al.  Aging-Related Increases in Behavioral Variability: Relations to Losses of Dopamine D1 Receptors , 2012, The Journal of Neuroscience.

[45]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[46]  N. Logothetis,et al.  The Amplitude and Timing of the BOLD Signal Reflects the Relationship between Local Field Potential Power at Different Frequencies , 2012, The Journal of Neuroscience.

[47]  Hidehiko Takahashi,et al.  Functional significance of central D1 receptors in cognition: beyond working memory , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[48]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[49]  S. MacDonald,et al.  Dopamine D1 receptors and age differences in brain activation during working memory , 2011, Neurobiology of Aging.

[50]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[51]  L. Nyberg,et al.  Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues , 2010, Neuroscience & Biobehavioral Reviews.

[52]  H. Kikyo,et al.  Contribution of Dopamine D1 and D2 Receptors to Amygdala Activity in Human , 2010, The Journal of Neuroscience.

[53]  Bharat B. Biswal,et al.  The oscillating brain: Complex and reliable , 2010, NeuroImage.

[54]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[55]  Ciprian Catana,et al.  Simultaneous PET-MRI: a new approach for functional and morphological imaging , 2008, Nature Medicine.

[56]  R. Bakay,et al.  Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: Diminished compensatory mechanisms as a prelude to parkinsonism , 2007, Neurobiology of Disease.

[57]  Mark Slifstein,et al.  In Vivo DA D1 Receptor Selectivity of NNC 112 and SCH 23390 , 2007, Molecular Imaging and Biology.

[58]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[59]  Brian Knutson,et al.  Linking nucleus accumbens dopamine and blood oxygenation , 2007, Psychopharmacology.

[60]  R. Dolan,et al.  Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans , 2006, Nature.

[61]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[62]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[63]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[64]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[65]  K. Någren,et al.  PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD , 2000, Neurology.

[66]  N. Volkow,et al.  Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. , 2000, The American journal of psychiatry.

[67]  E. Perry,et al.  Dopaminergic activities in the human striatum: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine , 1999, Neuroscience.

[68]  N. Volkow,et al.  Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging , 1998, Annals of neurology.

[69]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[70]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[71]  P. Rabbitt,et al.  Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. , 1994, Dementia.

[72]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[73]  Päivi Marjamäki,et al.  Age-dependent decline in human brain dopamine D1 and D2 receptors , 1990, Brain Research.

[74]  Philip Seeman,et al.  Human brain dopamine receptors in children and aging adults , 1987, Synapse.

[75]  J. C. Stoof,et al.  Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum , 1981, Nature.