Improving photometric redshift estimation using GPz: size information, post processing and improved photometry

The next generation of large scale imaging surveys (such as those conducted with the Large Synoptic Survey Telescope and Euclid) will require accurate photometric redshifts in order to optimally extract cosmological information. Gaussian Processes for photometric redshift estimation (GPz) is a promising new method that has been proven to provide efficient, accurate photometric redshift estimations with reliable variance predictions. In this paper, we investigate a number of methods for improving the photometric redshift estimations obtained using GPz (but which are also applicable to others). We use spectroscopy from the Galaxy and Mass Assembly Data Release 2 with a limiting magnitude of r<19.4 along with corresponding Sloan Digital Sky Survey visible (ugriz) photometry and the UKIRT Infrared Deep Sky Survey Large Area Survey near-IR (YJHK) photometry. We evaluate the effects of adding near-IR magnitudes and angular size as features for the training, validation and testing of GPz and find that these improve the accuracy of the results by ~15-20 per cent. In addition, we explore a post-processing method of shifting the probability distributions of the estimated redshifts based on their Quantile-Quantile plots and find that it improves the bias by ~40 per cent. Finally, we investigate the effects of using more precise photometry obtained from the Hyper Suprime-Cam Subaru Strategic Program Data Release 1 and find that it produces significant improvements in accuracy, similar to the effect of including additional features.

[1]  Paul Hickson,et al.  Multinarrowband imaging: a new technique for multi-object spectrophotometry , 1994 .

[2]  Roman Zitlau,et al.  Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.

[3]  Stephen J. Roberts,et al.  GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts , 2016, 1604.03593.

[4]  Manda Banerji,et al.  A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies , 2008, 0812.3831.

[5]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[6]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[7]  Davis,et al.  Overconfidence in photometric redshift estimation , 2016, 1601.07857.

[8]  H. Zhan,et al.  THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS , 2012, 1202.0640.

[9]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[10]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[11]  G. Bernstein,et al.  Catastrophic photometric redshift errors: weak-lensing survey requirements , 2009, 0902.2782.

[12]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[13]  Edwin L. Turner,et al.  A Catalog of Color-based Redshift Estimates for Z <~ 4 Galaxies in the Hubble Deep Field , 1998 .

[14]  M. Way GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY , 2011, 1104.3758.

[15]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[16]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[17]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[18]  Chinese Academy of Sciences,et al.  OBSERVATIONAL H(z) DATA AS A COMPLEMENTARITY TO OTHER COSMOLOGICAL PROBES , 2008, 0804.3135.

[19]  M. Fairbairn,et al.  GAz: a genetic algorithm for photometric redshift estimation , 2014, 1412.5997.

[20]  Konrad Kuijken,et al.  A K-Band-selected Photometric Redshift Catalog in the Hubble Deep Field South: Sampling the Rest-Frame V Band to z = 3 , 2001, astro-ph/0106074.

[21]  S. Bardelli,et al.  Photo-z performance for precision cosmology – II. Empirical verification* , 2012, 1201.0995.

[22]  O. Fèvre,et al.  Evolution of the specific star formation rate function at z< 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS , 2014, 1410.4875.

[23]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[24]  M. Dickinson,et al.  Photometric Redshifts for Galaxies in the GOODS Southern Field , 2003, astro-ph/0309068.

[25]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[26]  D. C. Koo,et al.  Optical multicolors - A poor person's z machine for galaxies , 1985 .

[27]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[28]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[29]  Yong-Heng Zhao,et al.  Estimating Photometric Redshifts with Artificial Neural Networks and Multi-Parameters , 2007 .

[30]  F. Castander,et al.  OPTIMAL FILTER SYSTEMS FOR PHOTOMETRIC REDSHIFT ESTIMATION , 2008, 0812.3568.

[31]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[32]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[33]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[34]  Bhuvnesh Jain,et al.  Cross-correlation tomography: measuring dark energy evolution with weak lensing. , 2003, Physical review letters.

[35]  Roberto Tagliaferri,et al.  Neural Networks for Photometric Redshifts Evaluation , 2003, WIRN.

[36]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[37]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[38]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[39]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[40]  Stephen J. Roberts,et al.  A Sparse Gaussian Process Framework for Photometric Redshift Estimation , 2015, ArXiv.

[41]  A. Szalay,et al.  An Optimal Multihump Filter for Photometric Redshifts , 2001, astro-ph/0106073.

[42]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[43]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[44]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[45]  Alexander S. Szalay,et al.  The redshift-space galaxy two-point correlation function and baryon acoustic oscillations , 2014, 1408.4648.

[46]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[47]  C. Lintott,et al.  Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.

[48]  M. Shmakova,et al.  The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach , 2011, 1101.4011.

[49]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[50]  G. Zamorani,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .

[51]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[52]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[53]  M. Jarvis,et al.  The evolving relation between star-formation rate and stellar mass in the VIDEO Survey since z=3 , 2015, 1507.07503.