Densification of synthetic fused silica under ultraviolet irradiation

Fused silica undergoes densification upon prolonged exposure to high energy radiation and explanations in terms of changes in the silica tetrahedral ring structure have been offered. Under laser irradiation, the densification is often less than 10 parts per million, necessitating sensitive optical techniques for its measurement. This paper reviews some of the key literature, with emphasis on recent studies involving 193 nm excimer laser irradiation, and presents recent evidence that the UV laser-induced densification involves optically-induced weakening of bonds, via a two-photon absorption process, and subsequent structural relaxation of the glass.

[1]  T. A. Dellin,et al.  Volume, index‐of‐refraction, and stress changes in electron‐irradiated vitreous silica , 1977 .

[2]  William Primak,et al.  Mechanism for the Radiation Compaction of Vitreous Silica , 1972 .

[3]  D. C. Shaver,et al.  Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica , 1989 .

[4]  E. J. Friebele,et al.  Radiation-induced surface deformation in low-thermal-expansion glasses and glass-ceramics , 1988 .

[5]  Kurt E. Leopold,et al.  Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength , 1989 .

[6]  Paul W. Levy,et al.  Reactor and gamma-ray induced coloring of corning fused silica∗ , 1960 .

[7]  David L. Griscom,et al.  Optical Properties and Structure of Defects in Silica Glass , 1991 .

[8]  Greene,et al.  Primary relaxation processes at the band edge of SiO2. , 1993, Physical review letters.

[9]  D. Allan,et al.  193-nm excimer-laser-induced densification of fused silica. , 1996, Optics letters.

[10]  E. P. EerNisse,et al.  Ionization dilatation effects in fused silica from 2 to 18‐keV electron irradiation , 1974 .

[11]  J. E. Shelby,et al.  Radiation effects in hydrogen‐impregnated vitreous silica , 1979 .

[12]  Donald L. Kinser,et al.  Radiation Effects on the Physical Properties of Low‐Expansion‐Coefficient Glasses and Ceramics , 1988 .

[13]  F. L. Galeener Planar rings in glasses , 1982 .

[14]  E. P. EerNisse,et al.  Compaction of ion‐implanted fused silica , 1974 .

[15]  F. L. Galeener Raman and ESR studies of the thermal history of amorphous SiO2 , 1985 .

[16]  Theodor Tamir,et al.  Resonant scattering by multilayered dielectric gratings , 1997 .

[17]  W. Gauster,et al.  Flux Flow and Thermal Stability of Stabilized Superconductors , 1968 .

[18]  William G. Oldham,et al.  Deep‐ultraviolet damage to fused silica , 1994 .

[19]  William Primak,et al.  The Radiation Compaction of Vitreous Silica , 1968 .

[20]  Devine,et al.  Evidence for a wide continuum of polymorphs in a-SiO2. , 1986, Physical review. B, Condensed matter.

[21]  P. McMillan,et al.  A Raman study of pressure‐densified vitreous silica , 1984 .

[22]  G. Walrafen,et al.  Raman spectrum of pressure compacted fused silica , 1981 .

[23]  Structure of the self-trapped exciton in quartz. , 1990 .

[24]  B. Humbert,et al.  Origin of the Raman bands, D1 and D2, in high surface area and vitreous silicas , 1992 .

[25]  George W. Arnold,et al.  Radiation Effects in Silica at Low Temperatures , 1959 .

[26]  O Kittelmann,et al.  Intensity-dependent transmission properties of window materials at 193-nm irradiation. , 1994, Optics letters.

[27]  Hiroshi Hirashima,et al.  Intrinsic- and extrinsic-defect formation in silica glasses by radiation☆ , 1994 .

[28]  E. Joseph Friebele,et al.  The effect of gamma-irradiation on the density of various types of silica , 1991 .

[29]  George W. Scherer,et al.  Theories of relaxation , 1990 .

[30]  J. T. Krause,et al.  Raman scattering and far infra-red absorption in neutron compacted silica , 1970 .

[31]  F. L. Galeener,et al.  Planar rings in vitreous silica , 1982 .

[32]  R. Devine,et al.  Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2 , 1993 .

[33]  William G. Oldham,et al.  Durability of experimental fused silicas to 193-nm induced compaction , 1997, Advanced Lithography.

[34]  Devine Defect creation and two-photon absorption in amorphous SiO2. , 1989, Physical review letters.

[35]  K. Kondo,et al.  Densified silica glass after shock compression , 1997 .

[36]  Tsai,et al.  Mechanism of intrinsic Si E'-center photogeneration in high-purity silica. , 1988, Physical review letters.

[37]  R. W. Hendricks,et al.  Neutron irradiation effects and structure of noncrystalline SiO2 , 1974 .

[38]  Graham Williams Molecular motion in glass-forming systems , 1991 .

[39]  N. Borrelli,et al.  Effects of glass forming conditions on the KrF-excimer-laser-induced optical damage in synthetic fused silica , 1996 .