Modeling the separation of macromolecules: A review of current computer simulation methods

Theory and numerical simulations play a major role in the development of improved and novel separation methods. In some cases, computer simulations predict counterintuitive effects that must be taken into account in order to properly optimize a device. In other cases, simulations allow the scientist to focus on a subset of important system parameters. Occasionally, simulations even generate entirely new separation ideas! In this article, we review the main simulation methods that are currently being used to model separation techniques of interest to the readers of Electrophoresis. In the first part of the article, we provide a brief description of the numerical models themselves, starting with molecular methods and then moving towards more efficient coarse‐grained approaches. In the second part, we briefly examine nine separation problems and some of the methods used to model them. We conclude with a short discussion of some notoriously hard‐to‐model separation problems and a description of some of the available simulation software packages.

[1]  D. Branton,et al.  Voltage-driven DNA translocations through a nanopore. , 2001, Physical review letters.

[2]  Gerhard Hummer,et al.  System-Size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions , 2004 .

[3]  Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion , 2007, cond-mat/0702463.

[4]  F. Escobedo,et al.  Simulation of Chain-length Partitioning in a Microfabricated Channel via Entropic Trapping , 2003 .

[5]  Kurt Binder,et al.  Interdiffusion and self‐diffusion in polymer mixtures: A Monte Carlo study , 1991 .

[6]  E. Yeung,et al.  Anomalous radial migration of single DNA molecules in capillary electrophoresis. , 2002, Analytical chemistry.

[7]  Roland G. Winkler,et al.  Polyelectrolyte electrophoresis: Field effects and hydrodynamic interactions , 2008 .

[8]  R. Netz Nonequilibrium unfolding of polyelectrolyte condensates in electric fields. , 2003, Physical review letters.

[9]  Matej Praprotnik,et al.  Concurrent triple-scale simulation of molecular liquids. , 2008, The Journal of chemical physics.

[10]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[11]  E. Strychalski,et al.  Size-dependent DNA mobility in nanochannels , 2007 .

[12]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[13]  J. Di Meglio,et al.  Electrophoretic separation of large DNAs using steric confinement. , 2006, Journal of colloid and interface science.

[14]  P. Hünenberger Thermostat Algorithms for Molecular Dynamics Simulations , 2005 .

[15]  Influence of hydrodynamics on many-particle diffusion in 2D colloidal suspensions , 2003, The European physical journal. E, Soft matter.

[16]  D. Schwartz,et al.  A coarse grain model for DNA. , 2007, The Journal of chemical physics.

[17]  P. M. Rodger,et al.  DL_POLY: Application to molecular simulation , 2002 .

[18]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[19]  Español,et al.  Hydrodynamics from dissipative particle dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Hirotada Ohashi,et al.  A mesoscopic simulation model for immiscible multiphase fluids , 2004 .

[21]  M. Graham,et al.  Cross-stream-line migration in confined flowing polymer solutions: Theory and simulation , 2006 .

[22]  Greg L. Hura,et al.  Water structure from scattering experiments and simulation. , 2002, Chemical reviews.

[23]  M. Muthukumar,et al.  Modeling of polynucleotide translocation through protein pores and nanotubes , 2002, Electrophoresis.

[24]  C. Lowe,et al.  An alternative approach to dissipative particle dynamics , 1999 .

[25]  Juan J de Pablo,et al.  Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [corrected]. , 2004, The Journal of chemical physics.

[26]  H. Craighead,et al.  Separation of long DNA molecules in a microfabricated entropic trap array. , 2000, Science.

[27]  Alfredo E. Cardenas,et al.  Three-dimensional dynamic Monte Carlo simulations of driven polymer transport through a hole in a wall , 2001 .

[28]  Hirotada Ohashi,et al.  Development of a Simulation Model for Solid Objects Suspended in a Fluctuating Fluid , 2002 .

[29]  O. B. Usta,et al.  Transverse migration of a confined polymer driven by an external force. , 2007, Physical review letters.

[30]  M. Graham,et al.  Modeling DNA in confinement : A comparison between the Brownian dynamics and lattice Boltzmann method , 2007 .

[31]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[32]  R. Winkler,et al.  Dynamics of polymers in a particle-based mesoscopic solvent. , 2005, The Journal of chemical physics.

[33]  J. Viovy Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms , 2000 .

[34]  John B. Bell,et al.  Algorithm Refinement for Fluctuating Hydrodynamics , 2008, Multiscale Model. Simul..

[35]  M. Muthukumar,et al.  Diffusion of a polymer chain in random media , 1989 .

[36]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Ventra,et al.  Colloquium: Physical approaches to DNA sequencing and detection , 2007, 0708.2724.

[38]  A. Barron,et al.  DNA sequencing and genotyping in miniaturized electrophoresis systems , 2004, Electrophoresis.

[39]  Structure of Polymer Brushes in Cylindrical Tubes: A Molecular Dynamics Simulation , 2006, cond-mat/0606637.

[40]  Juan J de Pablo,et al.  The effect of hydrodynamic interactions on the dynamics of DNA translocation through pores. , 2008, The Journal of chemical physics.

[41]  G. Drouin,et al.  Free-solution electrophoresis of DNA , 1998 .

[42]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[43]  H. Tseng,et al.  Transient Electrokinetic Flow in Fine Capillaries , 2001 .

[44]  J J de Pablo,et al.  Simulation of phase transitions in fluids. , 1999, Annual review of physical chemistry.

[45]  Shane T. Grosser,et al.  Identification of PCR products using PNA amphiphiles in micellar electrokinetic chromatography. , 2007, Analytical Chemistry.

[46]  Polymer translocation through a nanopore under a pulling force. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Jongyoon Han,et al.  Characterization and optimization of an entropic trap for DNA separation. , 2002, Analytical chemistry.

[48]  Anomalous dynamics of translocation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  R. D. Groot,et al.  From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat. , 2005, The Journal of chemical physics.

[50]  R. Meagher,et al.  Comblike, monodisperse polypeptoid drag-tags for DNA separations by end-labeled free-solution electrophoresis (ELFSE). , 2005, Bioconjugate chemistry.

[51]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[52]  Dilip Gersappe,et al.  Modeling the dynamics of DNA electrophoresis on a flat surface , 2002, Electrophoresis.

[53]  A new set of Monte Carlo moves for lattice random-walk models of biased diffusion , 2004, physics/0411139.

[54]  Gary W Slater,et al.  A Monte Carlo algorithm to study polymer translocation through nanopores. I. Theory and numerical approach. , 2008, The Journal of chemical physics.

[55]  Polymer translocation through a nanopore: a showcase of anomalous diffusion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  E. Stellwagen,et al.  Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution , 2002, Electrophoresis.

[57]  D. Tildesley,et al.  The compression of polymer brushes under shear: the friction coefficient as a function of compression, shear rate and the properties of the solvent , 2005 .

[58]  M. Cates,et al.  Fluctuating lattice Boltzmann , 2004, cond-mat/0402598.

[59]  P. Gareil,et al.  A semi‐empirical approach to the modeling of the electrophoretic mobility in free solution: Application to polystyrenesulfonates of various sulfonation rates , 2000, Electrophoresis.

[60]  G. Slater,et al.  An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure , 1996, Electrophoresis.

[61]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[62]  Albert H. Widmann,et al.  Monte Carlo algorithms for the atomistic simulation of condensed polymer phases , 1995 .

[63]  Walter H. Stockmayer,et al.  Monte Carlo Calculations on the Dynamics of Polymers in Dilute Solution , 1962 .

[64]  J. Yeomans,et al.  Modeling a tethered polymer in Poiseuille flow. , 2005, The Journal of chemical physics.

[65]  N. Stellwagen,et al.  FREE SOLUTION MOBILITY OF OLIGOMERIC DNA , 1999 .

[66]  B. Gaš,et al.  Dispersive phenomena in electromigration separation methods , 2000, Electrophoresis.

[67]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[68]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[69]  Rubin H. Landau,et al.  Computational Physics: Problem Solving with Computers , 1997 .

[70]  Collision of a field-driven polymer with a post: Electrophoresis in microlithographic arrays. , 1996, Physical review letters.

[71]  Christian Holm,et al.  Importance of hydrodynamic shielding for the dynamic behavior of short polyelectrolyte chains. , 2007, Physical review letters.

[72]  J. F. Ryder,et al.  Kinetics of the polymer collapse transition: the role of hydrodynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  A. Ajdari,et al.  Influence of end-grafted polyelectrolytes on electro-osmosis along charged surfaces , 2001 .

[74]  M. Muthukumar,et al.  Polymer translocation through a hole , 1999 .

[75]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[76]  K. Shin,et al.  DNA electrophoresis on a flat surface. , 2000, Physical review letters.

[77]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[78]  Bond fluctuation method for a polymer undergoing gel electrophoresis , 1998, cond-mat/9808122.

[79]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[80]  Sauro Succi,et al.  Lattice boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows. , 2006, Physical review letters.

[81]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[82]  W. Graessley Polymeric liquids and networks : dynamics and rheology , 2008 .

[83]  P. Coveney,et al.  Comparison of molecular dynamics with hybrid continuum-molecular dynamics for a single tethered polymer in a solvent. , 2004, The Journal of chemical physics.

[84]  Z Hugh Fan,et al.  Macro-to-micro interfaces for microfluidic devices. , 2004, Lab on a chip.

[85]  Kurt Binder,et al.  Recent Developments in Monte Carlo Simulations of Lattice Models for Polymer Systems , 2008 .

[86]  Brownian Dynamics Simulations of a DNA Molecule Colliding with a Small Cylindrical Post , 2007 .

[87]  Debabrata Panja,et al.  Passage times for unbiased polymer translocation through a narrow pore. , 2005, Physical review letters.

[88]  T. Ala‐Nissila,et al.  Heteropolymer translocation through nanopores. , 2007, The Journal of chemical physics.

[89]  Chi-Ming Chen Driven translocation dynamics of polynucleotides through a nanopore: off-lattice Monte-Carlo simulations , 2005 .

[90]  David C. Schwartz,et al.  Effect of confinement on DNA dynamics in microfluidic devices , 2003 .

[91]  M. Muthukumar,et al.  Single chain entanglement: A Monte Carlo simulation of dilute solution capillary electrophoresis , 1998 .

[92]  S. Prager,et al.  Variational Treatment of Hydrodynamic Interaction in Polymers , 1969 .

[93]  Ulf D. Schiller,et al.  Statistical mechanics of the fluctuating lattice Boltzmann equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[95]  J. Callis,et al.  Observation of individual DNA molecules undergoing gel electrophoresis. , 1989, Science.

[96]  K. Kremer,et al.  Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  G. Slater,et al.  Exactly solvable Ogston model of gel electrophoresis. IX. Generalizing the lattice model to treat high field intensities , 2002 .

[98]  Gerard T Barkema,et al.  Lattice models of DNA electrophoresis , 2002, Electrophoresis.

[99]  Kurt Binder,et al.  Monte Carlo and Molecular Dynamics Simulations Polymer , 1995 .

[100]  Howard H. Hu,et al.  Numerical simulation of electroosmotic flow. , 1998, Analytical chemistry.

[101]  G. Slater,et al.  An exactly solvable Ogston model of gel electrophoresis: VIII. Nonconducting gel fibers, curved field lines, and the Nernst‐Einstein relation , 2001, Electrophoresis.

[102]  Theoretical studies of DNA during gel electrophoresis. , 1989, Science.

[103]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[104]  Axel Arnold,et al.  Efficient methods to compute long-range interactions for soft matter systems , 2005 .

[105]  T. Duke,et al.  Motion of megabase deoxyribonucleic acid during field‐inversion gel electrophoresis: Investigation by nonlocal Monte Carlo , 1992 .

[106]  David C. Schwartz,et al.  Conformational dynamics of individual DNA molecules during gel electrophoresis , 1989, Nature.

[107]  Erik Luijten,et al.  Langevin Dynamics Study of Polymer Translocation through a Nanopore , 2007 .

[108]  Shane T. Grosser,et al.  Length‐dependent DNA separations using multiple end‐attached peptide nucleic acid amphiphiles in micellar electrokinetic chromatography , 2008, Electrophoresis.

[109]  G. Slater,et al.  An exactly solvable Ogston model of gel electrophoresis VI. Towards a theory for macromolecules , 2001, Electrophoresis.

[110]  Grant D. Smith,et al.  Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study , 2003 .

[111]  Matej Praprotnik,et al.  Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. , 2007, Soft matter.

[112]  Ralf Eichhorn,et al.  Brownian motion: Absolute negative particle mobility , 2005, Nature.

[113]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[114]  Duke Tube model of field-inversion electrophoresis. , 1989, Physical review letters.

[115]  Kurt Binder,et al.  Monte Carlo studies on the freely jointed polymer chain with excluded volume interaction , 1979 .

[116]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[117]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[118]  D. Hoagland,et al.  Capillary Electrophoresis Measurements of the Free Solution Mobility for Several Model Polyelectrolyte Systems , 1999 .

[119]  M. Krishnan,et al.  Spontaneous stretching of DNA in a two-dimensional nanoslit. , 2007, Nano letters.

[120]  P. Serwer,et al.  Application of the concept of an electrophoretic ratchet , 2001, Electrophoresis.

[121]  Gary W. Slater,et al.  Entropic Trapping of DNA During Gel Electrophoresis: Effect of Field Intensity and Gel Concentration , 1997 .

[122]  H. Blanch,et al.  A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions , 1994, Electrophoresis.

[123]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[124]  J. Noolandi,et al.  ON THE MOBILITY OF STIFF POLYELECTROLYTES , 1995 .

[125]  Zhaoli Guo,et al.  A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices. , 2005, The Journal of chemical physics.

[126]  D. Long,et al.  Polyelectrolyte/post collisions during electrophoresis: Influence of hydrodynamic interactions , 1998 .

[127]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[128]  G. Slater,et al.  Molecular Dynamics simulation of a polymer chain translocating through a nanoscopic pore , 2008, The European physical journal. E, Soft matter.

[129]  Y. Joo,et al.  Brownian dynamics simulations of polyelectrolyte molecules traveling through an entropic trap array during electrophoresis. , 2007, The Journal of chemical physics.

[130]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[131]  Gary W Slater,et al.  Building reliable lattice Monte Carlo models for real drift and diffusion problems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  Sauro Succi,et al.  Multiscale Simulation of Nanobiological Flows , 2008, Computing in Science & Engineering.

[133]  A. Ladd,et al.  Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. , 2005, The Journal of chemical physics.

[134]  G. Slater,et al.  Theory of Capillary Electrophoretic Separation of DNA Using Ultradilute Polymer Solutions , 1996 .

[135]  G. Slater,et al.  Molecular-dynamics simulations with explicit hydrodynamics II: On the collision of polymers with molecular obstacles , 2006, The European physical journal. E, Soft matter.

[136]  A. G. Schlijper,et al.  Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics , 1997 .

[137]  B. Zimm Lakes-straits model of field-inversion gel electrophoresis of DNA , 1991 .

[138]  M. Glaser,et al.  Coarse-grained simulation of polymer translocation through an artificial nanopore , 2003, cond-mat/0301406.

[139]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[140]  P. He,et al.  Modulation of electroosmotic flow by neutral polymers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[141]  Erwin Frey,et al.  Statics and dynamics of single DNA molecules confined in nanochannels. , 2005, Physical review letters.

[142]  I. Teraoka Polymer solutions: An introduction to physical properties , 2002 .

[143]  G. Slater,et al.  An exactly solvable Ogston model of gel electrophoresis II. Sieving through periodic gels , 1996, Electrophoresis.

[144]  D. Schwartz,et al.  DNA Molecules in Microfluidic Oscillatory Flow. , 2005, Macromolecules.

[145]  M. Fixman Construction of Langevin forces in the simulation of hydrodynamic interaction , 1986 .

[146]  K. Grass,et al.  On the importance of hydrodynamic interactions in polyelectrolyte electrophoresis , 2008, 0808.2606.

[147]  J. Padding,et al.  Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[148]  O. B. Usta,et al.  Flow-induced migration of polymers in dilute solution , 2006 .

[149]  T Ihle,et al.  Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  Christian Holm,et al.  How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines , 1998 .

[151]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[152]  S. Pennathur,et al.  Electrokinetic transport in nanochannels. 2. Experiments. , 2005, Analytical chemistry.

[153]  G. Slater,et al.  On the stretching of DNA in the reptation theories of gel electrophoresis , 1987, Biopolymers.

[154]  Slater,et al.  Self-trapping and anomalous dispersion of DNA in electrophoresis. , 1987, Physical review letters.

[155]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[156]  J. Di Meglio,et al.  Diffusion of latex and DNA chains in 2D confined media. , 2008, Journal of colloid and interface science.

[157]  Pep Español,et al.  Boundary Models in DPD , 1998 .

[158]  Hans-Jörg Limbach,et al.  ESPResSo - an extensible simulation package for research on soft matter systems , 2006, Comput. Phys. Commun..

[159]  E. Yeung,et al.  Mechanism for the separation of large molecules based on radial migration in capillary electrophoresis. , 2003, Analytical chemistry.

[160]  Hiroshi Noguchi,et al.  Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[162]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[163]  Arieh Warshel,et al.  A local reaction field method for fast evaluation of long‐range electrostatic interactions in molecular simulations , 1992 .

[164]  D. Marenduzzo,et al.  Dynamics of polymer packaging. , 2004, The Journal of chemical physics.

[165]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[166]  Harold G. Craighead,et al.  Entropic trapping and sieving of long DNA molecules in a nanofluidic channel , 1999 .

[167]  G. Slater,et al.  Modulation of Electroosmotic Flow Strength with End-Grafted Polymer Chains , 2006 .

[168]  R. Winkler,et al.  Star polymers in shear flow. , 2006, Physical review letters.

[169]  Langevin dynamics simulations of polymer translocation through nanopores. , 2006, The Journal of chemical physics.

[170]  山川 裕巳,et al.  Modern theory of polymer solutions , 1971 .

[171]  P. Doyle,et al.  Collision of a DNA Polymer with a Small Obstacle , 2006 .

[172]  M. Graham,et al.  Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  Alan D. Sokal,et al.  Nonergodicity of local, length-conserving Monte Carlo algorithms for the self-avoiding walk , 1987 .

[174]  F. Schmid,et al.  Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation. , 2004, Journal of biotechnology.

[175]  M. Muthukumar,et al.  A trapped polymer chain in random porous media , 1987 .

[176]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[177]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[178]  Amit Meller,et al.  Progress toward ultrafast DNA sequencing using solid-state nanopores. , 2007, Clinical chemistry.

[179]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[180]  M. Tuckerman,et al.  Understanding Modern Molecular Dynamics: Techniques and Applications , 2000 .

[181]  Thomas N. Chiesl,et al.  Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes , 2008, Proceedings of the National Academy of Sciences.

[182]  G. Slater,et al.  Electrophoretic Separation of Long Polyelectrolytes in Submolecular-Size Constrictions: A Monte Carlo Study , 2002 .

[183]  M. P. Allen,et al.  Tunable-slip boundaries for coarse-grained simulations of fluid flow , 2007, The European physical journal. E, Soft matter.

[184]  Slater,et al.  New biased-reptation model for charged polymers. , 1985, Physical review letters.

[185]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[186]  Juan J. de Pablo,et al.  Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations , 2000 .

[187]  Mehran Kardar,et al.  Anomalous dynamics of forced translocation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[188]  B. Gaš,et al.  Dynamics of peak dispersion in capillary zone electrophoresis including wall adsorption: II. Exact analysis of unsteady linear adsorptive dispersion , 1995, Electrophoresis.

[189]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[190]  John Waldron,et al.  The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering , 1996 .

[191]  K. Binder,et al.  Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications , 2002 .

[192]  Patrick S. Doyle,et al.  On the coarse-graining of polymers into bead-spring chains , 2004 .

[193]  H. Ch. Öttinger,et al.  Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms , 1995 .

[194]  T. Ala‐Nissila,et al.  Polymer translocation through a nanopore under an applied external field. , 2005, The Journal of chemical physics.

[195]  D. Deamer,et al.  Nanopores and nucleic acids: prospects for ultrarapid sequencing. , 2000, Trends in biotechnology.

[196]  G. Barkema,et al.  Passage times for polymer translocation pulled through a narrow pore. , 2007, Biophysical journal.

[197]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[198]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[199]  J T Padding,et al.  Hydrodynamic and brownian fluctuations in sedimenting suspensions. , 2004, Physical review letters.

[200]  S. Pennathur,et al.  Free-solution oligonucleotide separation in nanoscale channels. , 2007, Analytical chemistry.

[201]  G. Slater,et al.  An exactly solvable Ogston model of gel electrophoresis. Attractive gel‐analyte interactions and their effects on the Ferguson plot , 2000, Electrophoresis.

[202]  G. Slater,et al.  Polymer translocation in the presence of excluded volume and explicit hydrodynamic interactions , 2006 .

[203]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[204]  Deutsch,et al.  Electrophoresis in strong fields. , 1986, Physical review. A, General physics.

[205]  Polymer translocation through a nanopore: a two-dimensional Monte Carlo study. , 2005, The Journal of chemical physics.

[206]  R. Qiao Control of electroosmotic flow by polymer coating: effects of the electrical double layer. , 2006, Langmuir.

[207]  Juan J de Pablo,et al.  DNA dynamics in a microchannel. , 2003, Physical review letters.

[208]  Dierk Raabe,et al.  Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering , 2004 .

[209]  Y. Gliklikh The Langevin Equation , 1997 .

[210]  Gary W. Slater,et al.  Control and Quenching of Electroosmotic Flow with End-Grafted Polymer Chains , 2005 .

[211]  Jian-Sheng Wang,et al.  Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices , 2008 .

[212]  B. Chu,et al.  Influence of electric field intensity, ionic strength, and migration distance on the mobility and diffusion in DNA surface electrophoresis , 2006, Electrophoresis.

[213]  George M Whitesides,et al.  Generation of 30-50 nm structures using easily fabricated, composite PDMS masks. , 2002, Journal of the American Chemical Society.

[214]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[215]  Electrophoresis of DNA on a disordered two-dimensional substrate. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[216]  B. Gaš,et al.  Electroosmosis in capillary zone electrophoresis with non-uniform zeta potential , 1995 .

[217]  M. Muthukumar Theory of electrophoretic mobility of a polyelectrolyte in semidilute solutions of neutral polymers , 1996, Electrophoresis.

[218]  Dongshan Wei,et al.  Unforced translocation of a polymer chain through a nanopore: the solvent effect. , 2007, The Journal of chemical physics.

[219]  G De Fabritiis,et al.  Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[220]  Kurt Binder,et al.  Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model. , 2004, The Journal of chemical physics.

[221]  S. Pennathur,et al.  Electrokinetic transport in nanochannels. 1. Theory. , 2005, Analytical chemistry.

[222]  Gerhard Hummer,et al.  Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. , 2004, Biophysical journal.

[223]  G. Slater,et al.  Sequence effects on the forced translocation of heteropolymers through a small channel. , 2008, The Journal of chemical physics.

[224]  Numerically exact diffusion coefficients for lattice systems with periodic boundary conditions. II. Numerical approach and applications , 1999 .

[225]  Gerhard Gompper,et al.  Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics , 2004 .

[226]  T. Ala‐Nissila,et al.  Influence of polymer-pore interactions on translocation. , 2007, Physical review letters.

[227]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[228]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[229]  E. Sevick,et al.  Collision of a field-driven polymer with a finite-sized obstacle: a Brownian dynamics simulation , 1999 .

[230]  Young-Soo Seo,et al.  DNA separation at a liquid‐solid interface , 2002, Electrophoresis.

[231]  F. Schmid,et al.  Two-state migration of DNA in a structured microchannel. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[232]  C M Pooley,et al.  Kinetic theory derivation of the transport coefficients of stochastic rotation dynamics. , 2005, The journal of physical chemistry. B.

[233]  Jongyoon Han,et al.  Double-Stranded DNA Diffusion in Slitlike Nanochannels , 2006 .

[234]  J. Yeomans,et al.  Polymer translocation: the effect of backflow. , 2005, The Journal of chemical physics.

[235]  G. Fredrickson The theory of polymer dynamics , 1996 .

[236]  Juan J. de Pablo,et al.  Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions , 2002 .

[237]  Harold G. Craighead,et al.  ENTROPIC TRAPPING AND ESCAPE OF LONG DNA MOLECULES AT SUBMICRON SIZE CONSTRICTION , 1999 .

[238]  Polymer collapse in the presence of hydrodynamic interactions , 2002, The European physical journal. E, Soft matter.

[239]  Zesheng Li,et al.  Polymer translocation through a nanopore in mesoscopic simulations , 2007 .

[240]  G. Slater,et al.  Generalized tube model of biased reptation for gel electrophoresis of DNA. , 1989, Science.

[241]  Jeffrey Kovac,et al.  Effect of bead movement rules on the relaxation of cubic lattice models of polymer chains , 1983 .

[242]  P Koumoutsakos,et al.  Coupling lattice Boltzmann and molecular dynamics models for dense fluids. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[243]  Young-Soo Seo,et al.  DNA electrophoresis on nanopatterned surfaces , 2004 .

[244]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[245]  G. Slater,et al.  Numerically exact diffusion coefficients for lattice systems with periodic boundary conditions. I. Theory , 1999 .

[246]  C. Desruisseaux,et al.  Electrophoresis of Composite Molecular Objects. 1. Relation between Friction, Charge, and Ionic Strength in Free Solution , 2000 .

[247]  Gary W Slater,et al.  A Monte Carlo algorithm to study polymer translocation through nanopores. II. Scaling laws. , 2008, The Journal of chemical physics.

[248]  Z. Konkoli,et al.  Charged polymer membrane translocation , 2002 .

[249]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[250]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[251]  M. Muthukumar,et al.  Polymers in Disordered Media , 2007 .

[252]  G. Slater,et al.  Exact lattice calculations of dispersion coefficients in the presence of external fields and obstacles , 2004, The European physical journal. E, Soft matter.

[253]  E. Stellwagen,et al.  Unified description of electrophoresis and diffusion for DNA and other polyions. , 2003, Biochemistry.

[254]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[255]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[256]  R. Larson,et al.  Using spring repulsions to model entanglement interactions in Brownian dynamics simulations of bead–spring chains , 2008 .

[257]  J. M. Deutsch,et al.  Simulation of highly stretched chains using long‐range Monte Carlo , 1991 .

[258]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[259]  G Gompper,et al.  Dynamic regimes of fluids simulated by multiparticle-collision dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[260]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[261]  Julia M. Yeomans,et al.  Mesoscale simulations: Lattice Boltzmann and particle algorithms , 2006 .

[262]  Florian Müller-Plathe,et al.  Scale-Hopping in Computer Simulations of Polymers , 2002 .

[263]  F. Oaks,et al.  Separating DNA sequencing fragments without a sieving matrix , 1999, Electrophoresis.

[264]  R. Netz Polyelectrolytes in Electric Fields , 2003 .

[265]  M. Muthukumar Polymer escape through a nanopore , 2003 .

[266]  Sung,et al.  Polymer Translocation through a Pore in a Membrane. , 1996, Physical review letters.

[267]  G. Slater,et al.  Strategies for the separation of polyelectrolytes based on non-linear dynamics and entropic ratchets in a simple microfluidic device , 2002 .

[268]  K. Schulten,et al.  Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel , 2005 .