International Journal of Computational Intelligence Systems

Abstract In the last decades, nature-inspired algorithms have been widely used to solve complex combinatorial optimisation problems. Among them, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms have been extensively employed as search and optimisation tools in various problem domains. Evolutionary and Swarm Intelligent algorithms are Artificial Intelligence (AI) techniques, inspired by natural evolution and adaptation. This paper presents two new nature-inspired algorithms, which use concepts of EAs and SI. The combination of EAs and SI algorithms can unify the fast speed of EAs to find global solutions and the good precision of SI algorithms to find good solutions using the feedback information. The proposed algorithms are applied to a complex NP-hard optimisation problem - the Terminal Assignment Problem (TAP). The objective is to minimise the link cost to form a network. The proposed algorithms are compared with several EAs and SI algorithms from literature. We show that the propose...

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  Francesco Ranzato An efficient simulation algorithm on Kripke structures , 2014, Acta Informatica.

[3]  Miguel A. Vega-Rodríguez,et al.  A Genetic Algorithm with Multiple Operators for Solving the Terminal Assignment Problem , 2008, New Challenges in Applied Intelligence Technologies.

[4]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[5]  Lale Özbakır,et al.  Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem , 2007 .

[6]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[7]  Miguel A. Vega-Rodríguez,et al.  Solving ring loading problems using bio-inspired algorithms , 2011, J. Netw. Comput. Appl..

[8]  Xin Yao,et al.  Non-standard cost terminal assignment problems using tabu search approach , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  Xin Yao,et al.  Hybrid Evolutionary Approaches to Terminal Assignment in Communications Networks , 2005 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Marco Dorigo,et al.  Ant colony optimization , 2006, IEEE Computational Intelligence Magazine.

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[14]  Seok J. Koh,et al.  A tabu search for the survivable fiber optic communication network design , 1995 .

[15]  Miguel A. Vega-Rodríguez,et al.  A Hybrid Scatter Search algorithm to assign terminals to concentrators , 2010, IEEE Congress on Evolutionary Computation.

[16]  Miguel A. Vega-Rodríguez,et al.  Discrete Differential Evolution Algorithm for Solving the Terminal Assignment Problem , 2010, PPSN.

[17]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[18]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[19]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[20]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[21]  Xin Yao,et al.  A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Miguel A. Vega-Rodríguez,et al.  Using the Bees Algorithm to Assign Terminals to Concentrators , 2010, IEA/AIE.

[23]  Miguel A. Vega-Rodríguez,et al.  A Hybrid DE Algorithm with a Multiple Strategy for Solving the Terminal Assignment Problem , 2010, SETN.

[24]  Gene H. M Kapantow Solving concentrator location and terminal assignment problems using simulated annealing , 1996 .

[25]  Mehmet Fatih Tasgetiren,et al.  A discrete differential evolution algorithm for the permutation flowshop scheduling problem , 2007, GECCO '07.

[26]  Miguel A. Vega-Rodríguez,et al.  A Hybrid Differential Evolution Algorithm for Solving the Terminal Assignment Problem , 2009, IWANN.

[27]  Mir M. Atiqullah,et al.  Reliability optimization of communication networks using simulated annealing , 1993 .

[28]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[29]  Miguel A. Vega-Rodríguez,et al.  Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm , 2008, DCAI.

[30]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[31]  Zengnian Zhang,et al.  Solving terminal allocation problem using simulated annealing arithmetic , 2008 .

[32]  Chor Ping Low An efficient algorithm for the minimum cost min-max load terminal assignment problem , 2005, IEEE Communications Letters.

[33]  Miguel A. Vega-Rodríguez,et al.  Swarm optimisation algorithms applied to large balanced communication networks , 2013, J. Netw. Comput. Appl..

[34]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[35]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[36]  Bryant A. Julstrom Evolutionary codings and operators for the terminal assignment problem , 2009, GECCO '09.

[37]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[38]  Samuel Pierre,et al.  Topological design of computer communication networks using simulated annealing , 1995 .

[39]  Sami Khuri,et al.  Heuristic algorithms for the terminal assignment problem , 1997, SAC '97.

[40]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[41]  Miguel A. Vega-Rodríguez,et al.  Solving large-scale SONET network design problems using bee-inspired algorithms , 2012, Opt. Switch. Netw..

[42]  Roger L. Wainwright,et al.  Terminal assignment in a communications network using genetic algorithms , 1994, CSC '94.

[43]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[44]  Miguel A. Vega-Rodríguez,et al.  A Hybrid Ant Colony Optimization Algorithm for Solving the Terminal Assignment Problem , 2009, IJCCI.

[45]  Miguel A. Vega-Rodríguez,et al.  Hybrid Population-based Incremental Learning to Assign Terminals to Concentrators , 2010, IJCCI.

[46]  Fred W. Glover,et al.  Least-cost network topology design for a new service , 1991, Ann. Oper. Res..

[47]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[48]  Sancho Salcedo-Sanz,et al.  Solving terminal assignment problems with groups encoding: The wedding banquet problem , 2006, Eng. Appl. Artif. Intell..