Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties

Within-field management zones (MZ) delineated using soil electrical conductivity (EC) may provide the basis for site-specific crop management (SSCM). The objective of this study was to evaluate the efficiency of EC for delineating homogenous soil MZ related to soil properties. Soil EC was measured on a 15-m×15-m grid using a Geonics EM38 on a 13.8-ha commercial field under potato (Solanum tuberosum L.) production. A subset of this grid (30 m×30 m) was used to collect soil samples (0–0.2 m) and to perform soil profile descriptions (1.2 m). Soil samples were analyzed for physico-chemical properties (texture, organic matter, pH, Mehlich-3 extractable elements). Potato tuber yields were measured using a yield monitor in 1998, 1999, and 2000. The K-means clustering algorithm was performed for delineating MZ using the soil EC kriged data matrix. Two MZ were found to be optimal for implementing SSCM management for potato in this field. These two MZ showed significant differences in soil water regime (thickness of sandy deposit over the clayey substratum, water table depth, water-holding capacity) and in some soil physico-chemical properties (soil organic matter, soil P, soil pH). Significant differences in potato yields (5.9 t ha−1) between the two MZ were attributed to differing water supply. Soil EC has the potential to be used efficiently for delineating within-field MZ for soils in which soil deposits and soil physical properties control soil moisture availability.ResumenEl manejo de campo dentro de zonas (ZM) delineados por la conductividad eléctrica (CE), puede proporcionar las bases para el manejo del cultivo dentro de un lugar específico (MCLE). El objetivo de este estudio fue evaluar la eficiencia de la CE para delinear las ZM en suelos homogéneos con relación a sus propiedades. La CE del suelo fue medida sobre una rejilla 15×15 m, utilizando Geonics EM38 en un campo comercial de 13.8 ha de papa (Solanum tuberosum L.) en producción. Un subconjunto de esta rejilla (30×30 m) fue utilizado para colectar muestras (0–0.2 m) y realizar la descripción del perfil del suelo (1.2 m). Las muestras de suelo fueron analizadas para determinar sus propiedades físico químicas (textura, materia orgánica, pH, elementos extraíbles Mehlich 3). Los rendimientos de tubérculos fueron medidos en 1998, 1999 y 2000, utilizando un monitor de rendimiento. Los promedios K del agrupamiento algoritmo se realizaron para delinear las ZM, utilizando los datos kriged matrix de CE. Se encontraron dos ZM óptimas para implementar el MCLE para papa en este campo. Estas dos ZM mostraron diferencias significativas en el régimen de agua del suelo (grosor del depósito de arena sobre substrato arcilloso, profundidad de la capa de agua, capacidad de retención de agua) y algunas propiedades físico químicas (materia orgánica, P, pH). Las diferencias significativas de los rendimientos (5.9t/ha−1) entre dos ZM fueron atribuidas a un mejor abastecimiento de agua. La CE tiene el potencial de ser utilizada eficientemente para delinear dentro del campo las ZM para suelos en los cuales los depósitos y las propiedades físicas controlan la disponibilidad de humedad del suelo.

[1]  D. Kroetsch,et al.  Particle Size Distribution , 2007 .

[2]  D. Lynch,et al.  The effect of moisture stress at three growth stages on the yield, components of yield and processing quality of eight potato varieties , 1995, American Potato Journal.

[3]  Kenneth A. Sudduth,et al.  Comparison of electromagnetic induction and direct sensing of soil electrical conductivity , 2003 .

[4]  Bg Williams,et al.  The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils , 1987 .

[5]  R. G. Evans,et al.  Relating potato yield and quality to field scale variability in soil characteristics , 2002, American Journal of Potato Research.

[6]  D. Maynard,et al.  Nitrate and Exchangeable Ammonium Nitrogen , 1993 .

[7]  David E. Clay,et al.  Factors influencing spatial variability of soil apparent electrical conductivity , 2001 .

[8]  Scott M. Lesch,et al.  Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 1. Statistical Prediction Models: A Comparison of Multiple Linear Regression and Cokriging , 1995 .

[9]  Prediction of Nitrogen Responses of Corn by Soil Nitrogen Mineralization Indicators , 2001, TheScientificWorldJournal.

[10]  A. B. McBratney,et al.  The “Null Hypothesis” of Precision Agriculture Management , 2000, Precision Agriculture.

[11]  G. M. Ballance,et al.  A sensitive colorimetric procedure for nitrogen determination in micro-Kjeldahl digests , 1982 .

[12]  A. Y. Hanna,et al.  Soil Available Water as Influenced by Landscape Position and Aspect1 , 1982 .

[13]  lCRISAT Soil, Crop, and Water Management Systems for Rainfed Agriculture in the Sudano-Sahelian Zone: proceedings of an International Workshop,11-16 Jan 1987, ICRISAT Sahelian Center. Niamey, Niger , 1989 .

[14]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .

[15]  D. Corwin,et al.  Application of Soil Electrical Conductivity to Precision Agriculture , 2003 .

[16]  N. R. Kitchena,et al.  Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity , 2005 .

[17]  D. K. Cassel,et al.  Soil-Landscape Relationships in a Closed Drainage System 1 , 1974 .

[18]  Kenneth A. Sudduth,et al.  Estimating depths to claypans using electromagnetic induction methods , 1994 .

[19]  Clyde W. Fraisse,et al.  Delineation of Site-Specific Management Zones by Unsupervised Classification of Topographic Attributes and Soil Electrical Conductivity , 2001 .

[20]  G. Flatman,et al.  Geostatistical strategy for soil sampling: the survey and the census , 1984, Environmental monitoring and assessment.

[21]  W. E. Larson,et al.  Effects of located application of papermill residues on crop yields and soil quality. , 2000 .

[22]  J. Baldock,et al.  Total and Organic Carbon , 2007 .

[23]  Kenneth A. Sudduth,et al.  Soil Electrical Conductivity as a Crop Productivity Measure for Claypan Soils , 1999 .

[24]  Kenneth A. Sudduth,et al.  Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity , 2005 .

[25]  William H. Hendershot,et al.  Soil Reaction and Exchangeable Acidity , 2007 .

[26]  R. R. Simard,et al.  Indicator of risk of water contamination by P for soil landscape of Canada polygons. , 2000 .

[27]  Olivier Banton,et al.  Mapping Field-Scale Physical Properties of Soil with Electrical Resistivity , 1997 .

[28]  James E. Ayars,et al.  Identifying Soil Properties that Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil Electrical Conductivity , 2003 .

[29]  D. Corwin,et al.  Apparent soil electrical conductivity measurements in agriculture , 2005 .

[30]  A. McBratney,et al.  Soil spatial variability , 2000 .

[31]  Dennis L. Corwin,et al.  Editorial: Applications of apparent soil electrical conductivity in precision agriculture , 2005 .

[32]  P. C. Robert,et al.  Variability of soil and landscape attributes within sub-field management zones. , 2000 .