High performance parallel approximate eigensolver for real symmetric matrices
暂无分享,去创建一个
R. C. Ward | Yihua Bai | J. Dongarra | R. Ward | Yihua Bai | R. Hinde | Michael W. Berry
[1] David J. Kuck,et al. A Parallel QR Algorithm for Symmetric Tridiagonal Matrices , 1977, IEEE Transactions on Computers.
[2] Robert A. van de Geijn,et al. Reduction to condensed form for the eigenvalue problem on distributed memory architectures , 1992, Parallel Comput..
[3] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[4] Vipin Kumar,et al. A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering , 1998, J. Parallel Distributed Comput..
[5] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[6] John G. Lewis. Algorithm 582: The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for Reordering Sparse Matrices , 1982, TOMS.
[7] Michael Oettli. A Robust, Parallel Homotopy Algorithm for the Symmetric Tridiagonal Eigenproblem , 1998, SIAM J. Sci. Comput..
[8] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[9] Inderjit S. Dhillon,et al. The design and implementation of the MRRR algorithm , 2006, TOMS.
[10] C. H. Bischof,et al. A framework for symmetric band reduction and tridiagonalization , 1994 .
[11] J. Pople,et al. Approximate Self‐Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap , 1965 .
[12] D. Sorensen,et al. LAPACK Working Note No. 2: Block reduction of matrices to condensed forms for eigenvalue computations , 1987 .
[13] David L. Beveridge,et al. Approximate molecular orbital theory , 1970 .
[14] Wilfried N. Gansterer,et al. An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems , 2002, TOMS.
[15] Christian H. Bischof,et al. Algorithm 807: The SBR Toolbox—software for successive band reduction , 2000, TOMS.
[16] Jeffery D. Rutter. LAPACK Working Note 69: A Serial Implementation of Cuppen''s Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem , 1994 .
[17] J. H. Wilkinson,et al. The Calculation of Specified Eigenvectors by Inverse Iteration , 1971 .
[18] Patrick H. Worley,et al. Early Evaluation of the IBM p690 , 2002, ACM/IEEE SC 2002 Conference (SC'02).
[19] J. H. Wilkinson. Global convergene of tridiagonal QR algorithm with origin shifts , 1968 .
[20] M. Dewar,et al. Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .
[21] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[22] Alan J. Heeger,et al. Soliton excitations in polyacetylene , 1980 .
[23] H. Rutishauser. Der Quotienten-Differenzen-Algorithmus , 1954 .
[24] Norman E. Gibbs,et al. A Comparison of Several Bandwidth and Profile Reduction Algorithms , 1976, TOMS.
[25] Tien-Yien Li,et al. Homotopy algorithm for symmetric eigenvalue problems , 1989 .
[26] R. Ward,et al. Performance of Parallel Eigensolvers on Electronic Structure Calculations II , 2005 .
[27] Herbert J. Bernstein,et al. Parallel implementation of bisection for the calculation of eigenvalues of tridiagonal symmetric matrices , 2005, Computing.
[28] Robert A. van de Geijn,et al. SUMMA: Scalable Universal Matrix Multiplication Algorithm , 1995 .
[29] Peter Arbenz,et al. Parallel divide and conquer algorithms for the symmetric tridiagonal eigenproblem , 1994 .
[30] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[31] George Ho,et al. PAPI: A Portable Interface to Hardware Performance Counters , 1999 .
[32] D. Sorensen,et al. On the orthogonality of eigenvectors computed by divide-and-conquer techniques , 1991 .
[33] Claude Brezinski,et al. Lectures on Numerical mathematics , 1991, Numerical Algorithms.
[34] Wilfried N. Gansterer,et al. Block tridiagonalization of "effectively" sparse symmetric matrices , 2004, TOMS.
[35] W. Givens. Numerical Computation of the Characteristic Values of a Real Symmetric Matrix , 1954 .
[36] A. Melman. A numerical comparison of methods for solving secular equations , 1997 .
[37] Jack Dongarra,et al. ScaLAPACK: a scalable linear algebra library for distributed memory concurrent computers , 1992, [Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation.
[38] Beresford N. Parlett,et al. Invariant subspaces for tightly clustered eigenvalues of tridiagonals , 1996 .
[39] Linda Kaufman,et al. A Parallel QR Algorithm for the Symmetric Tridiagonal Eigenvalue Problem , 1994, J. Parallel Distributed Comput..
[40] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[41] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[42] T. Pruschke,et al. Introduction to Solid-State Theory , 1996 .
[43] Paul K. Weiner,et al. Ground states of molecules , 1972 .
[44] Jaeyoung Choi,et al. The design of a parallel dense linear algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form , 1995, Numerical Algorithms.
[45] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[46] Christian H. Bischof,et al. A framework for symmetric band reduction , 2000, TOMS.
[47] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[48] Tien-Yien Li,et al. An Algorithm for Symmetric Tridiagonal Eigenproblems: Divide and Conquer with Homotopy Continuation , 1993, SIAM J. Sci. Comput..
[49] M. Chu. A simple application of the homotopy method to symmetric eigenvalue problems , 1984 .
[50] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[51] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[52] J. Pople,et al. Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems , 1966 .
[53] Robert A. van de Geijn,et al. Deferred Shifting Schemes for Parallel QR Methods , 1993, SIAM J. Matrix Anal. Appl..
[54] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[55] Christian H. Bischof,et al. The WY representation for products of householder matrices , 1985, PPSC.
[56] Peter Arbenz,et al. A parallel implementation of the symmetric tridiagonal QR algorithm , 1992, [Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation.
[57] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[58] Steven Huss-Lederman,et al. A Parallelizable Eigensolver for Real Diagonalizable Matrices with Real Eigenvalues , 1997, SIAM J. Sci. Comput..
[59] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[60] Jack J. Dongarra,et al. A Portable Programming Interface for Performance Evaluation on Modern Processors , 2000, Int. J. High Perform. Comput. Appl..
[61] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[62] Wilfried N. Gansterer,et al. Computing Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices , 2003, SIAM J. Sci. Comput..
[63] Robert A. van de Geijn,et al. A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations , 2005, SIAM J. Sci. Comput..
[64] D. Sorensen,et al. Block reduction of matrices to condensed forms for eigenvalue computations , 1990 .
[65] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[66] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[67] Beresford N. Parlett. Spectral sensitivity of products of bidiagonals , 1998 .
[68] N. S. Ostlund,et al. Approximate self-consistent molecular orbital theory of nuclear spin coupling. V. Proton-proton coupling constants in substituted benzenes , 1970 .
[69] Jack Dongarra,et al. ScaLAPACK user's guide , 1997 .
[70] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[71] William G. Poole,et al. An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .
[72] Y. Danieli. Guide , 2005 .
[73] R. Parr. Density-functional theory of atoms and molecules , 1989 .
[74] Xian-He Sun,et al. Parallel Homotopy Algorithm for the Symmetric Tridiagonal Eigenvalue Problem , 1991, SIAM J. Sci. Comput..
[75] Robert M. Day. A Coarse-Grain Parallel Implementation of the Block Tridiagonal Divide and Conquer Algorithm for Symmetric Eigenproblems. , 2003 .
[76] N. H. March,et al. The many-body problem in quantum mechanics , 1968 .
[77] Michael Oettli,et al. The homotopy method applied to the symmetric eigenproblem , 1995 .
[78] Michael T. Heath,et al. Parallel Algorithms for Sparse Linear Systems , 1991, SIAM Rev..
[79] C. H. Bischof,et al. A parallel implementation of symmetric band reduction using PLAPACK , 1996 .
[80] Ming Gu,et al. Studies in numerical linear algebra , 1993 .
[81] Wilfried N. Gansterer,et al. Multi-sweep Algorithms for the Symmetric Eigenproblem , 1998, VECPAR.
[82] Jack J. Dongarra,et al. A set of level 3 basic linear algebra subprograms , 1990, TOMS.
[83] Ilse C. F. Ipsen,et al. Improving the Accuracy of Inverse Iteration , 1992, SIAM J. Sci. Comput..
[84] Guodong Zhang,et al. A Parallel Implementation of the Invariant Subspace Decomposition Algorithm for Dense Symmetric Matrices , 1993, PPSC.
[85] Christian H. Bischof,et al. Parallel Bandreduction and Tridiagonalization , 1993, PPSC.
[86] Robert A. van de Geijn,et al. SUMMA: scalable universal matrix multiplication algorithm , 1995, Concurr. Pract. Exp..
[87] Ilse C. F. Ipsen,et al. Solving the Symmetric Tridiagonal Eigenvalue Problem on the Hypercube , 1990, SIAM J. Sci. Comput..
[88] Norman E. Gibbs,et al. Matrix Bandwidth and Profile Reduction. , 1975 .
[89] Jaeyoung Choi,et al. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms , 1995, PARA.
[90] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[91] James Demmel,et al. Modeling the benefits of mixed data and task parallelism , 1995, SPAA '95.
[92] J. Callaway. Quantum theory of the solid state , 1974 .
[93] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[94] Jack Dongarra,et al. Parallelizing the Divide and Conquer Algorithm for the SymmetricTridiagonal Eigenvalue Problem on Distributed Memory Architectures , 1998 .