ACCURATE EIGENVALUES AND SVDs OF TOTALLY

We consider the class of totally nonnegative (TN) matrices—matrices all of whose minors are nonnegative. Any nonsingular TN matrix factors as a product of nonnegative bidiagonal matrices. The entries of the bidiagonal factors parameterize the set of nonsingular TN matrices. We present new O(n3) algorithms that, given the bidiagonal factors of a nonsingular TN matrix, compute its eigenvalues and SVD to high relative accuracy in floating point arithmetic, independent of the conventional condition number. All eigenvalues are guaranteed to be computed to high relative accuracy despite arbitrary nonnormality in the TN matrix. We prove that the entries of the bidiagonal factors of a TN matrix determine its eigenvalues and SVD to high relative accuracy. We establish necessary and sufficient conditions for computing the entries of the bidiagonal factors of a TN matrix to high relative accuracy, given the matrix entries. In particular, our algorithms compute all eigenvalues and the SVD of TN Cauchy, Vandermonde, Cauchy–Vandermonde, and generalized Vandermonde matrices to high relative accuracy.

[1]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[2]  J. Demmel,et al.  Computing the Singular Value Decomposition with High Relative Accuracy , 1997 .

[3]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[4]  J. M. Peña,et al.  On Factorizations of Totally Positive Matrices , 1996 .

[5]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[6]  T. Andô Totally positive matrices , 1987 .

[7]  I. Dhillon Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .

[8]  Juan Manuel Peña,et al.  Total positivity and Neville elimination , 1992 .

[9]  Israel Koltracht,et al.  On accurate computations of the Perron root , 1993 .

[10]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[11]  Sergey Fomin,et al.  Total positivity : tests and parametrizations , 2018 .

[12]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[13]  Nicholas J. Higham,et al.  Error analysis of the Björck-Pereyra algorithms for solving Vandermonde systems , 1987 .

[14]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.

[15]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[16]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[17]  Beresford N. Parlett,et al.  The New qd Algorithms , 1995, Acta Numerica.

[18]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[19]  Nicholas J. Higham,et al.  Stability analysis of algorithms for solving confluent Vandermonde-like systems , 1990 .

[20]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[21]  Juan Manuel Peña,et al.  Total positivity, QR factorization, and Neville elimination , 1993 .

[22]  James Demmel,et al.  Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..

[23]  Francesco Brenti,et al.  The Applications of Total Positivity to Combinatorics, and Conversely , 1996 .

[24]  Juan Manuel Peña,et al.  Factorizations of Cauchy-Vandermonde matrices , 1998 .

[25]  S. Fomin,et al.  Parametrizations of Canonical Bases and Totally Positive Matrices , 1996 .

[26]  T. Kailath,et al.  A fast parallel Björck–Pereyra-type algorithm for solving Cauchy linear equations , 1999 .

[27]  Al Geist,et al.  The BR Eigenvalue Algorithm , 1997, SIAM J. Matrix Anal. Appl..

[28]  Juan Manuel Peña,et al.  Fast algorithms of Bjo¨rck-Pereyra type for solving Cauchy-Vandermonde linear systems , 1998 .

[29]  James Demmel,et al.  The Accurate and Efficient Solution of a Totally Positive Generalized Vandermonde Linear System , 2005, SIAM J. Matrix Anal. Appl..

[30]  G. J. Habetler,et al.  Tridiagonalization of Completely Nonnegative Matrices , 1972 .

[31]  A. Whitney,et al.  A reduction theorem for totally positive matrices , 1952 .

[32]  James Demmel Accurate Singular Value Decompositions of Structured Matrices , 2000, SIAM J. Matrix Anal. Appl..

[33]  Sergey Fomin,et al.  Double Bruhat cells and total positivity , 1998, math/9802056.

[34]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[35]  Shaun M. Fallat Bidiagonal Factorizations of Totally Nonnegative Matrices , 2001, Am. Math. Mon..