Fuzzy clustering with spatial–temporal information

Abstract Clustering geographical units based on a set of quantitative features observed at several time occasions requires to deal with the complexity of both space and time information. In particular, one should consider (1) the spatial nature of the units to be clustered, (2) the characteristics of the space of multivariate time trajectories, and (3) the uncertainty related to the assignment of a geographical unit to a given cluster on the basis of the above complex features. This paper discusses a novel spatially constrained multivariate time series clustering for units characterized by different levels of spatial proximity. In particular, the Fuzzy Partitioning Around Medoids algorithm with Dynamic Time Warping dissimilarity measure and spatial penalization terms is applied to classify multivariate Spatial–Temporal series. The clustering method has been theoretically presented and discussed using both simulated and real data, highlighting its main features. In particular, the capability of embedding different levels of proximity among units, and the ability of considering time series with different length.

[1]  Mahmoud Torabi,et al.  Hierarchical multivariate mixture generalized linear models for the analysis of spatial data: An application to disease mapping , 2016, Biometrical journal. Biometrische Zeitschrift.

[2]  Eamonn J. Keogh,et al.  Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping , 2012, KDD.

[3]  Sam Yuan Sung,et al.  A hybrid EM approach to spatial clustering , 2006, Comput. Stat. Data Anal..

[4]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[5]  Pierpaolo D'Urso,et al.  Clustering of financial time series , 2013 .

[6]  Yong Yang Agglomeration density and tourism development in China: An empirical research based on dynamic panel data model , 2012 .

[7]  Pierpaolo D'Urso,et al.  Fuzzy Clustering for Data Time Arrays With Inlier and Outlier Time Trajectories , 2005, IEEE Transactions on Fuzzy Systems.

[8]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .

[9]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jorge Caiado,et al.  Comparison of Times Series with Unequal Length in the Frequency Domain , 2009, Commun. Stat. Simul. Comput..

[12]  Pierpaolo D'Urso,et al.  Quantile autocovariances: A powerful tool for hard and soft partitional clustering of time series , 2017, Fuzzy Sets Syst..

[13]  Olufemi A. Omitaomu,et al.  Weighted dynamic time warping for time series classification , 2011, Pattern Recognit..

[14]  Frank Klawonn,et al.  Fuzzy clustering: More than just fuzzification , 2015, Fuzzy Sets Syst..

[15]  Witold Pedrycz,et al.  Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means , 2013, IEEE Transactions on Fuzzy Systems.

[16]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[17]  Eamonn J. Keogh,et al.  Accelerating Dynamic Time Warping Clustering with a Novel Admissible Pruning Strategy , 2015, KDD.

[18]  Pierpaolo D'Urso,et al.  Time series clustering by a robust autoregressive metric with application to air pollution , 2015 .

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Pierpaolo D'Urso,et al.  A Fuzzy Clustering Model for Multivariate Spatial Time Series , 2010, J. Classif..

[21]  Jingjing Zhao,et al.  Spatial continuity incorporated multi-attribute fuzzy clustering algorithm for blood vessels segmentation , 2010, Science China Information Sciences.

[22]  Pierpaolo D'Urso,et al.  GARCH-based robust clustering of time series , 2016, Fuzzy Sets Syst..

[23]  Achim Dobermann,et al.  An algorithm for spatially constrained classification of categorical and continuous soil properties , 2006 .

[24]  Vladimir Estivill-Castro,et al.  Fast and Robust General Purpose Clustering Algorithms , 2000, Data Mining and Knowledge Discovery.

[25]  Pierpaolo D'Urso,et al.  Dissimilarity measures for time trajectories , 2000 .

[26]  Tapan Kamdar,et al.  On Creating Adaptive Web Servers Using Weblog Mining , 2000 .

[27]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[28]  Brian Everitt,et al.  Cluster analysis , 1974 .

[29]  Pierpaolo D'Urso,et al.  Fuzzy K-means clustering models for triangular fuzzy time trajectories , 2002 .

[30]  Lakhmi C. Jain,et al.  Fuzzy clustering models and applications , 1997, Studies in Fuzziness and Soft Computing.

[31]  Elizabeth Ann Maharaj,et al.  A coherence-based approach for the pattern recognition of time series , 2010 .

[32]  Hui Ding,et al.  Querying and mining of time series data: experimental comparison of representations and distance measures , 2008, Proc. VLDB Endow..

[33]  Pierpaolo D'Urso,et al.  Copula-based fuzzy clustering of spatial time series , 2017 .

[34]  Mahmoud Torabi Spatial generalized linear mixed models with multivariate CAR models for areal data , 2014 .

[35]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[36]  Jorge Caiado,et al.  A periodogram-based metric for time series classification , 2006, Comput. Stat. Data Anal..

[37]  Jorge Caiado,et al.  Identifying common dynamic features in stock returns , 2010 .

[38]  Edoardo Otranto,et al.  Identifying financial time series with similar dynamic conditional correlation , 2010, Comput. Stat. Data Anal..

[39]  Pierre-Louis Bazin,et al.  Topology-Preserving Tissue Classification of Magnetic Resonance Brain Images , 2007, IEEE Transactions on Medical Imaging.

[40]  Yang Yang,et al.  Spatial effects in regional tourism growth , 2014 .

[41]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[42]  Jerry L. Prince,et al.  Adaptive Fuzzy Segmentation ofMagnetic Resonance , 2007 .

[43]  Eyke Hüllermeier,et al.  Comparing Fuzzy Partitions: A Generalization of the Rand Index and Related Measures , 2012, IEEE Transactions on Fuzzy Systems.

[44]  Derya Birant,et al.  ST-DBSCAN: An algorithm for clustering spatial-temporal data , 2007, Data Knowl. Eng..

[45]  Pierpaolo D'Urso,et al.  Robust fuzzy clustering of multivariate time trajectories , 2018, Int. J. Approx. Reason..

[46]  Dzung L. Pham,et al.  Spatial Models for Fuzzy Clustering , 2001, Comput. Vis. Image Underst..

[47]  Miin-Shen Yang,et al.  A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction , 2008, Pattern Recognit. Lett..

[48]  Alan Wee-Chung Liew,et al.  Segmentation of color lip images by spatial fuzzy clustering , 2003, IEEE Trans. Fuzzy Syst..

[49]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[50]  Pierpaolo D’Urso,et al.  Autocorrelation-based fuzzy clustering of time series , 2009, Fuzzy Sets Syst..

[51]  N. G. Zagoruyko,et al.  Automatic recognition of 200 words , 1970 .

[52]  Tao Ma,et al.  Tourism spatial spillover effects and urban economic growth , 2015 .

[53]  D. Piccolo A DISTANCE MEASURE FOR CLASSIFYING ARIMA MODELS , 1990 .

[54]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[55]  Zhimin Wang,et al.  Adaptive spatial information-theoretic clustering for image segmentation , 2009, Pattern Recognit..

[56]  Yoshiharu Sato,et al.  On a multicriteria fuzzy Clustering Method for 3-Way Data , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[57]  Raghu Krishnapuram,et al.  Fitting an unknown number of lines and planes to image data through compatible cluster merging , 1992, Pattern Recognit..

[58]  Weixin Xie,et al.  Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors , 2016, Inf. Sci..

[59]  Elizabeth Ann Maharaj,et al.  Fuzzy clustering of time series using extremes , 2017, Fuzzy Sets Syst..

[60]  Alan Wee-Chung Liew,et al.  Fuzzy image clustering incorporating spatial continuity , 2000 .

[61]  Elizabeth Ann Maharaj,et al.  Fuzzy clustering of time series in the frequency domain , 2011, Inf. Sci..

[62]  Sotirios Chatzis,et al.  A Fuzzy Clustering Approach Toward Hidden Markov Random Field Models for Enhanced Spatially Constrained Image Segmentation , 2008, IEEE Transactions on Fuzzy Systems.

[63]  Francky Fouedjio,et al.  A hierarchical clustering method for multivariate geostatistical data , 2016 .

[64]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[65]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Pierpaolo D'Urso,et al.  Fuzzy unsupervised classification of multivariate time trajectories with the Shannon entropy regularization , 2006, Comput. Stat. Data Anal..

[67]  Y. A. Tolias,et al.  On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system , 1998, IEEE Signal Processing Letters.

[68]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the silhouette width criterion for cluster analysis , 2006, Fuzzy Sets Syst..

[69]  Gloria Bordogna,et al.  Fuzzy extensions of the DBScan clustering algorithm , 2016, Soft Comput..

[70]  Elizabeth Ann Maharaj,et al.  Wavelets-based clustering of multivariate time series , 2012, Fuzzy Sets Syst..

[71]  Alex B. McBratney,et al.  Application of fuzzy sets to climatic classification , 1985 .

[72]  Maurizio Vichi,et al.  Fuzzy partition models for fitting a set of partitions , 2001 .

[73]  Borja Lafuente-Rego,et al.  Clustering of time series using quantile autocovariances , 2016, Adv. Data Anal. Classif..

[74]  Cinzia Viroli,et al.  Finite mixtures of matrix normal distributions for classifying three-way data , 2011, Stat. Comput..

[75]  Dao-Qiang Zhang,et al.  A novel kernelized fuzzy C-means algorithm with application in medical image segmentation , 2004, Artif. Intell. Medicine.

[76]  Geoffrey J. McLachlan,et al.  The mixture method of clustering applied to three-way data , 1985 .

[77]  Shashi Shekhar,et al.  Spatiotemporal Data Mining: A Computational Perspective , 2015, ISPRS Int. J. Geo Inf..

[78]  A. Gordaliza,et al.  Robustness Properties of k Means and Trimmed k Means , 1999 .

[79]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[80]  Yannis A. Tolias,et al.  Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[81]  Konstantinos Kalpakis,et al.  Distance measures for effective clustering of ARIMA time-series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[82]  Hugues Benoit-Cattin,et al.  Unsupervised time-series clustering of distorted and asynchronous temporal patterns , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[83]  Antonino Staiano,et al.  Genetic-based spatial clustering , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[84]  Pierpaolo D'Urso,et al.  Wavelet‐based self‐organizing maps for classifying multivariate time series , 2014 .

[85]  Elizabeth Ann Maharaj,et al.  Autoregressive model-based fuzzy clustering and its application for detecting information redundancy in air pollution monitoring networks , 2013, Soft Comput..

[86]  Pierpaolo D'Urso Fuzzy C-Means Clustering Models For Multivariate Time-Varying Data: Different Approaches , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[87]  G. Manca,et al.  Visualizing regional clusters of Sardinia's EU supported agriculture: A Spatial Fuzzy Partitioning Around Medoids , 2019, Land Use Policy.

[88]  Michael Ferry,et al.  ggtern: Ternary Diagrams Using ggplot2 , 2018 .

[89]  Pierre Gançarski,et al.  A global averaging method for dynamic time warping, with applications to clustering , 2011, Pattern Recognit..

[90]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[91]  Min Wang,et al.  Mining Spatial-temporal Clusters from Geo-databases , 2006, ADMA.

[92]  Elizabeth Ann Maharaj,et al.  Wavelet-based Fuzzy Clustering of Time Series , 2010, J. Classif..

[93]  Elizabeth Ann Maharaj,et al.  Comparison of time series using subsampling , 2005, Comput. Stat. Data Anal..

[94]  Luis Angel García-Escudero,et al.  A review of robust clustering methods , 2010, Adv. Data Anal. Classif..

[95]  Mark Kot,et al.  Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects , 1990 .

[96]  Elizabeth Ann Maharaj,et al.  Time-Series Clustering , 2015 .

[97]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[98]  Touradj Ebrahimi,et al.  Video segmentation based on multiple features for interactive multimedia applications , 1998, IEEE Trans. Circuits Syst. Video Technol..

[99]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[100]  Witold Pedrycz,et al.  Fuzzy clustering of time series data using dynamic time warping distance , 2015, Eng. Appl. Artif. Intell..

[101]  Darren M. Scott,et al.  Spatial statistics for urban analysis: A review of techniques with examples , 2004 .

[102]  Heungsun Hwang,et al.  Fuzzy Clusterwise Generalized Structured Component Analysis , 2007 .

[103]  Laura Firoiu,et al.  Clustering Time Series with Hidden Markov Models and Dynamic Time Warping , 1999 .

[104]  Pierpaolo D'Urso,et al.  Autoregressive metric-based trimmed fuzzy clustering with an application to PM10 time series , 2017 .

[105]  Francesca Bovolo,et al.  Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images , 2014 .

[106]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[107]  Elizabeth Ann Maharaj,et al.  A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS , 1996 .

[108]  Pierpaolo D'Urso,et al.  Three-way fuzzy clustering models for LR fuzzy time trajectories , 2003, Comput. Stat. Data Anal..

[109]  Taiyi Zhang,et al.  Image Segmentation Using Fuzzy Clustering with Spatial Constraints Based on Markov Random Field via Bayesian Theory , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..