Resonance frequency above 20 GHz in superparamagnetic NiZn-ferrite

We investigate the frequency dispersion of complex permeability in the GHz range in superparamagnetic nickel–zinc ferrite thin films with different Ni/Zn ratios using a microstrip probe. The films, comprising crystallites as small as 3 nm and deposited by a microwave-irradiation-assisted solvothermal method, exhibit the coexistence of two resonance characteristics—a ferromagnetic resonance peak ([Formula: see text]) at ∼2 GHz and a superparamagnetic resonance peak ([Formula: see text]) above 20 GHz, breaching Snoek's limit. The high value of [Formula: see text] is attributed to the high surface anisotropy and far-from-equilibrium distribution of cations in the lattice, while [Formula: see text] is attributed to the thermally driven superparamagnetic relaxation of ferrite nanocrystallites in the thin films. This work demonstrates the feasibility of employing superparamagnetic ferrite thin films so deposited as excellent CMOS-integrable magnetic components for high-speed and high-frequency electromagnetic device applications.

[1]  S. Yabukami,et al.  Dynamical magnetic behavior of anisotropic spinel-structured ferrite for GHz technologies , 2021, Scientific reports.

[2]  S. Emori,et al.  Ferrimagnetic insulators for spintronics: Beyond garnets , 2021 .

[3]  B. Ju,et al.  Structural and Magnetic Properties of NiZn Ferrite Nanoparticles Synthesized by a Thermal Decomposition Method , 2020, Applied Sciences.

[4]  D. Fiorani,et al.  Magnetocrystalline and Surface Anisotropy in CoFe2O4 Nanoparticles , 2020, Nanomaterials.

[5]  Y. S. Chen,et al.  Large magnetic anisotropy in highly strained epitaxial MgFe2O4 thin films , 2020 .

[6]  M. Yamaguchi,et al.  Crystallographic inversion-mediated superparamagnetic relaxation in Zn-ferrite nanocrystals , 2020, AIP Advances.

[7]  S. Rezende,et al.  Introduction to antiferromagnetic magnons , 2019, Journal of Applied Physics.

[8]  Shandong Li,et al.  Stress-Enhanced Interlayer Exchange Coupling and Optical-Mode FMR Frequency in Self-Bias FeCoB/Ru/FeCoB Trilayers. , 2018, ACS Applied Materials and Interfaces.

[9]  Haitao Yang,et al.  Achieving a high cutting-off frequency in the oriented CoFe2O4 nanocubes , 2017 .

[10]  Shouheng Sun,et al.  Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. , 2016, Chemical reviews.

[11]  Shiv k. Sharma,et al.  Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn , 2016 .

[12]  A. Thakur,et al.  Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna , 2016, Journal of Materials Science: Materials in Electronics.

[13]  Robert M. White,et al.  Increasing ferromagnetic resonance frequency using lamination and shape , 2015 .

[14]  Xuefeng Zhang,et al.  Break Snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanoparticles , 2015 .

[15]  Longtu Li,et al.  High‐frequency ferromagnetic resonance of Co nanowire arrays , 2014 .

[16]  Xuefeng Zhang,et al.  Assembled micro-nano particles with multiple interface polarizations for electromagnetic absorption at gigahertz , 2014 .

[17]  Feng Chen,et al.  Microwave-assisted preparation of inorganic nanostructures in liquid phase. , 2014, Chemical reviews.

[18]  D. V. Kurmude,et al.  X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles , 2014 .

[19]  T. Drysdale,et al.  Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. , 2014, Chemical reviews.

[20]  Hai-tao Yang,et al.  Exceeding natural resonance frequency limit of monodisperse Fe3O4 nanoparticles via superparamagnetic relaxation , 2013, Scientific Reports.

[21]  N. Kalarikkal,et al.  Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite , 2013 .

[22]  J. Warzywoda,et al.  Spin-spray deposited NiZn-Ferrite films exhibiting μr′ > 50 at GHz range , 2011 .

[23]  C. Ong,et al.  Ultra-high ferromagnetic resonance frequency in exchange-biased system , 2010 .

[24]  S. Shivashankar,et al.  Microwave irradiation-assisted method for the deposition of adherent oxide films on semiconducting and dielectric substrates , 2010 .

[25]  V. Zeleňák,et al.  Magnetic properties of Fe2O3 nanoparticles embedded in hollows of periodic nanoporous silica , 2010 .

[26]  Yong Qin,et al.  Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy , 2010 .

[27]  Á. Millán,et al.  Surface and core magnetic anisotropy in maghemite nanoparticles determined by pressure experiments , 2009 .

[28]  Haitao Yang,et al.  Challenge of ultra high frequency limit of permeability for magnetic nanoparticle assembly with organic polymer—Application of superparamagnetism , 2009 .

[29]  Xinluo Zhao,et al.  Increased ferromagnetic resonance linewidth and exchange anisotropy in NiFe/FeMn bilayers , 2009 .

[30]  Huaiwu Zhang,et al.  Influence of microstructure on permeability dispersion and power loss of NiZn ferrite , 2008 .

[31]  M. Yamaguchi,et al.  Ultrahigh-frequency ferromagnetic properties of FeCoHf films deposited by gradient sputtering , 2008 .

[32]  L. Tagirov,et al.  Strain-induced magnetic anisotropies in epitaxial CrO2 thin films probed by FMR technique , 2006 .

[33]  J. B. Sousa,et al.  Evidence of surface anisotropy in magnetic nanoparticles , 2006 .

[34]  Joachim N. Burghartz,et al.  Shape-induced ultrahigh magnetic anisotropy and ferromagnetic resonance frequency of micropatterned thin Permalloy films , 2006 .

[35]  J. Greneche,et al.  Synthesis of nickel–zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies , 2006 .

[36]  Everett E. Carpenter,et al.  Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature , 2004 .

[37]  Takanori Tsutaoka,et al.  Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials , 2003 .

[38]  Tatsuya Nakamura,et al.  Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites , 2000 .

[39]  K. Hatakeyama,et al.  Magnetic field effect on the complex permeability spectra in a Ni–Zn ferrite , 1997 .

[40]  K. Hatakeyama,et al.  Frequency dispersion and temperature variation of complex permeability of Ni‐Zn ferrite composite materials , 1995 .