Stochastic optimization by message passing

Most optimization problems in applied sciences realistically involve uncertainty in the parameters defining the cost function, of which only statistical information is known beforehand. Here we provide an in-depth discussion of how message passing algorithms for stochastic optimization based on the cavity method of statistical physics can be constructed. We focus on two basic problems, namely the independent set problem and the matching problem, for which we display the general method and caveats for the case of the so called two-stage problem with independently distributed stochastic parameters. We compare the results with some greedy algorithms and briefly discuss the extension to more complicated stochastic multi-stage problems.

[1]  R. Wets,et al.  Stochastic programming , 1989 .

[2]  Peter Kall,et al.  Stochastic Programming , 1995 .

[3]  S. Kak Information, physics, and computation , 1996 .

[4]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[5]  V. Akila,et al.  Information , 2001, The Lancet.

[6]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  R. Zecchina,et al.  Polynomial iterative algorithms for coloring and analyzing random graphs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.

[9]  Y. Kabashima A CDMA multiuser detection algorithm on the basis of belief propagation , 2003 .

[10]  A. Montanari,et al.  How to compute loop corrections to the Bethe approximation , 2005, cond-mat/0506769.

[11]  David Saad,et al.  Improved message passing for inference in densely connected systems , 2005, ArXiv.

[12]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[13]  Riccardo Zecchina,et al.  Learning by message-passing in networks of discrete synapses , 2005, Physical review letters.

[14]  Andrew J. Schaefer,et al.  A factor 1/2 approximation algorithm for two-stage stochastic matching problems , 2006, Eur. J. Oper. Res..

[15]  Michael Chertkov,et al.  Loop series for discrete statistical models on graphs , 2006, ArXiv.

[16]  BMC Bioinformatics , 2005 .

[17]  Alfredo Braunstein,et al.  Estimating the size of the solution space of metabolic networks , 2007, BMC Bioinformatics.

[18]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[20]  Eli Upfal,et al.  Commitment under uncertainty: Two-stage stochastic matching problems , 2007, Theor. Comput. Sci..

[21]  D. Shah Network Scheduling and Message-passing , 2008 .

[22]  R Zecchina,et al.  Statistical mechanics of steiner trees. , 2008, Physical review letters.

[23]  Guilhem Semerjian,et al.  On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms , 2009, ArXiv.

[24]  Riccardo Zecchina,et al.  Statistical mechanics of budget-constrained auctions , 2009, ArXiv.

[25]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[26]  Devavrat Shah,et al.  Message Passing for Maximum Weight Independent Set , 2008, IEEE Transactions on Information Theory.

[27]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[28]  Zhen Liu,et al.  Performance Modeling and Engineering , 2010 .

[29]  Olivier Spanjaard,et al.  Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation , 2010, Eur. J. Oper. Res..

[30]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[31]  R Zecchina,et al.  Stochastic matching problem. , 2011, Physical review letters.