차량분리를 위한 스테레오매칭 데이터의 클러스터링

To segment instances of vehicle classes in a sparse stereo-matching data set, this paper presents an algorithm for clustering based on DP (Dynamic Programming). The algorithm is agglomerative: it begins with each element in the set as a separate cluster and merges them into successively larger clusters according to similarity of two clusters. Here, similarity is formulated as a cost function of DP. The proposed algorithm is proven to be effective by experiments performed on various images acquired by a moving vehicle.