Enzyme catalysis captured using multiple structures from one crystal at varying temperatures

MSOX (multiple serial structures from one crystal) serial crystallography experiments were carried out using controlled X-ray radiolysis and photon-counting detectors to determine sequences of low-dose yet high-resolution structures of copper nitrite reductase. Working at 190 K and at room temperature provides greater dynamic freedom, allowing more of the catalytic cycle to be observed than at the usual cryogenic temperature of 100 K. The approach demonstrates the potential to obtain MSOX structural movies at variable temperatures, thus providing an unparalleled level of structural information during catalysis for redox enzymes.

[1]  B. Shoichet,et al.  One Crystal, Two Temperatures: Cryocooling Penalties Alter Ligand Binding to Transient Protein Sites , 2015, Chembiochem : a European journal of chemical biology.

[2]  J. Colletier,et al.  Temperature-dependent macromolecular X-ray crystallography , 2010, Acta crystallographica. Section D, Biological crystallography.

[3]  S. Antonyuk,et al.  Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal , 2016, IUCrJ.

[4]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[5]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[6]  R. Strange,et al.  Recent structural insights into the function of copper nitrite reductases. , 2017, Metallomics : integrated biometal science.

[7]  M. Murphy,et al.  Conserved active site residues limit inhibition of a copper-containing nitrite reductase by small molecules. , 2008, Biochemistry.

[8]  Abhishek Dey,et al.  Spectroscopic and computational studies of nitrite reductase: proton induced electron transfer and backbonding contributions to reactivity. , 2009, Journal of the American Chemical Society.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  M. Murphy,et al.  Stable copper-nitrosyl formation by nitrite reductase in either oxidation state. , 2007, Biochemistry.

[11]  S. Hasnain,et al.  Demonstration of Proton-coupled Electron Transfer in the Copper-containing Nitrite Reductases* , 2009, The Journal of Biological Chemistry.

[12]  N. Scrutton,et al.  Laser‐flash photolysis indicates that internal electron transfer is triggered by proton uptake by Alcaligenes xylosoxidans copper‐dependent nitrite reductase , 2012, The FEBS journal.

[13]  Elspeth F. Garman,et al.  RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography , 2013 .

[14]  Gwyndaf Evans,et al.  Outrunning free radicals in room-temperature macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[15]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[16]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[17]  M. Murphy,et al.  Directing the mode of nitrite binding to a copper‐containing nitrite reductase from Alcaligenes faecalis S‐6: Characterization of an active site isoleucine , 2003, Protein science : a publication of the Protein Society.

[18]  F. E. Dodd,et al.  Structural and kinetic evidence for an ordered mechanism of copper nitrite reductase. , 1999, Journal of molecular biology.

[19]  Alexey A. Sokol,et al.  ChemShell—a modular software package for QM/MM simulations , 2014 .

[20]  J. Hajdu,et al.  The catalytic pathway of horseradish peroxidase at high resolution , 2002, Nature.

[21]  Cong Han,et al.  Proton-coupled electron transfer in the catalytic cycle of Alcaligenes xylosoxidans copper-dependent nitrite reductase. , 2011, Biochemistry.

[22]  C. Scholes,et al.  EPR-ENDOR of the Cu(I)NO complex of nitrite reductase. , 2006, Journal of the American Chemical Society.

[23]  J. Sussman,et al.  Specific protein dynamics near the solvent glass transition assayed by radiation‐induced structural changes , 2001, Protein science : a publication of the Protein Society.

[24]  S. Hasnain,et al.  Identification of the proton channel to the active site type 2 Cu center of nitrite reductase: structural and enzymatic properties of the His254Phe and Asn90Ser mutants. , 2008, Biochemistry.

[25]  Hein J. Wijma,et al.  A Random-sequential Mechanism for Nitrite Binding and Active Site Reduction in Copper-containing Nitrite Reductase* , 2006, Journal of Biological Chemistry.

[26]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[27]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  E. Lattman,et al.  Imaging enzyme kinetics at atomic resolution , 2016, IUCrJ.

[29]  Christian Roth,et al.  CCP4i2: the new graphical user interface to the CCP4 program suite , 2018, Acta crystallographica. Section D, Structural biology.

[30]  M. Nishiyama,et al.  Catalytic Roles for Two Water Bridged Residues (Asp-98 and His-255) in the Active Site of Copper-containing Nitrite Reductase* , 2000, The Journal of Biological Chemistry.

[31]  M. Murphy,et al.  Side-On Copper-Nitrosyl Coordination by Nitrite Reductase , 2004, Science.

[32]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[33]  K. Yamaguchi,et al.  Functional analysis of conserved aspartate and histidine residues located around the type 2 copper site of copper-containing nitrite reductase. , 2000, Journal of biochemistry.

[34]  Matteo Levantino,et al.  Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. , 2015, Current opinion in structural biology.

[35]  Ezequiel Panepucci,et al.  EIGER detector: application in macromolecular crystallography , 2016, Acta crystallographica. Section D, Structural biology.

[36]  Frank Neese,et al.  The ORCA program system , 2012 .

[37]  B. Howes,et al.  EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the type 2 copper centers of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). , 1994, Biochemistry.

[38]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[39]  Nathaniel Echols,et al.  Accessing protein conformational ensembles using room-temperature X-ray crystallography , 2011, Proceedings of the National Academy of Sciences.

[40]  Takashi Kameshima,et al.  Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography , 2016, Proceedings of the National Academy of Sciences.

[41]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[42]  D. Kern,et al.  Hidden alternate structures of proline isomerase essential for catalysis , 2010 .

[43]  D. Stuart,et al.  Exploiting fast detectors to enter a new dimension in room-temperature crystallography , 2014, Acta crystallographica. Section D, Biological crystallography.

[44]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[45]  S. Evans,et al.  Spectroelectrochemical investigation of intramolecular and interfacial electron-transfer rates reveals differences between nitrite reductase at rest and during turnover. , 2011, Journal of the American Chemical Society.

[46]  Graeme Winter,et al.  Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.

[47]  S. C. Rogers,et al.  QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis , 2003 .

[48]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[49]  M. Murphy,et al.  Alternate substrate binding modes to two mutant (D98N and H255N) forms of nitrite reductase from Alcaligenes faecalis S-6: structural model of a transient catalytic intermediate. , 2001, Biochemistry.

[50]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[51]  G. Blaha,et al.  Temperature-dependent radiation sensitivity and order of 70S ribosome crystals. , 2014, Acta crystallographica. Section D, Biological crystallography.

[52]  G. Sawers,et al.  Atomic resolution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase provide insight into catalytic mechanism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Hirao,et al.  Theoretical study on reaction mechanisms of nitrite reduction by copper nitrite complexes: toward understanding and controlling possible mechanisms of copper nitrite reductase. , 2015, The journal of physical chemistry. B.

[54]  Walter Thiel,et al.  DL-FIND: an open-source geometry optimizer for atomistic simulations. , 2009, The journal of physical chemistry. A.