New insights on chalcopyrites from solid-state theory

[1]  T. Eisenbarth,et al.  Evidence for a neutral grain-boundary barrier in chalcopyrites. , 2006, Physical review letters.

[2]  Yanfa Yan,et al.  Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory. , 2006, Physical review letters.

[3]  Wyatt K. Metzger,et al.  Grain-boundary recombination in Cu(In,Ga)Se2 solar cells , 2005 .

[4]  A. Zunger,et al.  Compositionally induced valence-band offset at the grain boundary of polycrystalline chalcopyrites creates a hole barrier , 2005 .

[5]  Shengbai Zhang,et al.  Defect properties of CuInSe2 and CuGaSe2 , 2005 .

[6]  W. Metzger,et al.  The impact of charged grain boundaries on thin-film solar cells and characterization , 2005 .

[7]  A. Zunger,et al.  n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .

[8]  M. Edoff,et al.  Compensating donors in Cu(In,Ga)Se2 absorbers of solar cells , 2005 .

[9]  J. Werner,et al.  Numerical simulation of grain boundary effects in Cu(In,Ga)Se2 thin-film solar cells , 2005 .

[10]  Leonard J. Brillson,et al.  Direct observation of copper depletion and potential changes at copper indium gallium diselenide grain boundaries , 2005 .

[11]  R. Noufi,et al.  Photon emission in CuInSe2 thin films observed by scanning tunneling microscopy , 2005 .

[12]  A. Zunger,et al.  Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors , 2005, cond-mat/0503018.

[13]  A. Zunger,et al.  Halogen n-type doping of chalcopyrite semiconductors , 2005 .

[14]  D. F. Marrón,et al.  Electrical activity at grain boundaries of Cu ( In , Ga ) Se 2 thin films , 2005 .

[15]  A. Zunger,et al.  Why can CuInSe2 be readily equilibrium-doped n-type but the wider-gap CuGaSe2 cannot? , 2004 .

[16]  A. Zunger,et al.  Metal-dimer atomic reconstruction leading to deep donor states of the anion vacancy in II-VI and chalcopyrite semiconductors. , 2004, Physical review letters.

[17]  D. Cahen,et al.  How Polycrystalline Devices Can Outperform Single‐Crystal Ones: Thin Film CdTe/CdS Solar Cells , 2004 .

[18]  J. Pankow,et al.  Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films , 2004 .

[19]  A. Zunger,et al.  Anomalous grain boundary physics in polycrystalline CuInSe2: the existence of a hole barrier. , 2003, Physical review letters.

[20]  Rommel Noufi,et al.  Cathodoluminescence of Cu(In,Ga)Se2 thin films used in high-efficiency solar cells , 2003 .

[21]  A. Zunger,et al.  Doping of chalcopyrites by hydrogen , 2003 .

[22]  A. Zunger,et al.  n -type doping and passivation of CuInSe 2 and CuGaSe 2 by hydrogen , 2003 .

[23]  Alex Zunger,et al.  Practical doping principles , 2003 .

[24]  Sidney R. Cohen,et al.  Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements , 2003 .

[25]  A. Zunger,et al.  n-type doping of oxides by hydrogen , 2002 .

[26]  A. Zunger,et al.  Defect-induced nonpolar-to-polar transition at the surface of chalcopyrite semiconductors , 2001 .

[27]  Kern,et al.  Dynamics of surface migration in the weak corrugation regime , 2000, Physical review letters.

[28]  A. Zunger,et al.  A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds , 1998 .

[29]  A. Zunger,et al.  Defect physics of the CuInSe 2 chalcopyrite semiconductor , 1998 .