A High Order Finite Volume -HLLC Solver and Anisotropic Delaunay Mesh Adaptation
暂无分享,去创建一个
Oubay Hassan | Lakhdar Remaki | Kenneth Morgan | Xie Zhongqiang | K. Morgan | O. Hassan | L. Remaki | Xie Zhongqiang
[1] Wagdi G. Habashi,et al. EFFICIENT ANISOTROPI C MESH ADAPTATION ON WEAK AND MULTIPLE SHOCKS , 2004 .
[2] Nigel P. Weatherill,et al. A multigrid accelerated time‐accurate inviscid compressible fluid flow solution algorithm employing mesh movement and local remeshing , 2003 .
[3] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[4] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[5] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[6] J. Peiro,et al. Adaptive remeshing for three-dimensional compressible flow computations , 1992 .
[7] Tao Lin,et al. On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..
[8] Michel Fortin. Anisotropic mesh adaptation through hierarchical error estimators , 2001 .
[9] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[10] LAKHDAR REMAKI,et al. 3-D Mesh Adaptation on Multiple Weak Discontinuities and Boundary Layers , 2006, SIAM J. Sci. Comput..
[11] A. Corsini. A FE Method for the Computational Fluid Dynamics of Turbomachinery , 2000 .
[12] Shlomo Ta'asan,et al. An absorbing buffer zone technique for acoustic wave propagation , 1995 .
[13] Claire Chainais-Hillairet,et al. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate , 1999 .
[14] Paul-Henry Cournède,et al. A Positive MUSCL Scheme for Triangulations , 1998 .
[15] B. G. Larwood,et al. Aerospace simulations on parallel computers using unstructured grids , 2002 .
[16] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[17] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .