WAKE-up: A wearable ankle knee exoskeleton

In this paper we present the alpha-prototype of the WAKE-up, a wearable robotic device for the rehabilitation of locomotion of pediatric subjects with neurological diseases such as Cerebral Palsy. The WAKE-up is an active knee-ankle orthosis. It is composed of two robotic modules for the rehabilitation of knee and ankle, respectively. Each module can be utilized either alone or together with the other one. The working principle is based on series elastic actuators (SEA), i.e., dc motors equipped with a torsional spring mounted in series to avoid the direct connection of the actuator with the patient's limb. A SEA permits the control of the force and the emulation of different orthoses with given value of stiffness. The torque transmission is achieved by a timing belt and it is mediated by a torsional spring. The experimental tests conducted on each modules confirmed a good precision of the spring deflection control (position error <; 2°) and good overall performances of the force control obtained with the spring stiffness chosen at the design phase.

[1]  Jerry E. Pratt,et al.  The RoboKnee: an exoskeleton for enhancing strength and endurance during walking , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[2]  M. Kiely,et al.  Descriptive epidemiology of cerebral palsy. , 1984, Public health reviews.

[3]  Hermano Igo Krebs,et al.  Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation , 2009, IEEE Transactions on Robotics.

[4]  Panagiotis K. Artemiadis,et al.  Pediatric anklebot , 2011, 2011 IEEE International Conference on Rehabilitation Robotics.

[5]  Hermano Igo Krebs,et al.  Feasibility Study of a Wearable Exoskeleton for Children: Is the Gait Altered by Adding Masses on Lower Limbs? , 2013, PloS one.

[6]  Daniel P. Ferris,et al.  An ankle-foot orthosis powered by artificial pneumatic muscles. , 2005, Journal of applied biomechanics.

[7]  H. Herr,et al.  Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait , 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[8]  H. Kawamoto,et al.  Power assist method for HAL-3 using EMG-based feedback controller , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[9]  I. Autti-Rämö,et al.  Effectiveness of physical therapy interventions for children with cerebral palsy: A systematic review , 2008, BMC pediatrics.