Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis

Vitrinite maturity and programmed pyrolysis are conventional methods to evaluate organic matter (OM) regarding its thermal maturity. Moreover, vitrinite reflectance analysis can be difficult if prepared samples have no primary vitrinite or dispersed widely. Raman spectroscopy is a nondestructive method that has been used in the last decade for maturity evaluation of organic matter by detecting structural transformations, however, it might suffer from fluorescence background in low mature samples. In this study, four samples of different maturities from both shale formations of Bakken (the upper and lower members) Formation were collected and analyzed with Rock-Eval (RE) and Raman spectroscopy. In the next step, portions of the same samples were then used for the isolation of kerogen and analyzed by Raman spectroscopy. Results showed that Raman spectroscopy, by detecting structural information of OM, could reflect thermal maturity parameters that were derived from programmed pyrolysis. Moreover, isolating kerogen will reduce the background noise (fluorescence) in the samples dramatically and yield a better spectrum. The study showed that thermal properties of OM could be precisely reflected in Raman signals.

[1]  R. Bustin,et al.  Late Devonian and Early Mississippian Bakken and Exshaw Black Shale Source Rocks, Western Canada Sedimentary Basin: A Sequence Stratigraphic Interpretation , 2000 .

[2]  Seyedalireza Khatibi,et al.  Raman spectroscopy: an analytical tool for evaluating organic matter , 2018 .

[3]  P. Painter,et al.  DETERMINATION OF FUNCTIONAL GROUPS IN COAL BY FOURIER TRANSFORM INTERFEROMETRY , 1985 .

[4]  B. Cesare,et al.  Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from Raman spectroscopy of graphite , 1999 .

[5]  R. Webster Chapter 19: Petroleum Source Rocks and Stratigraphy of the Bakken Formation in North Dakota , 1987 .

[6]  J. Rouzaud,et al.  Structure, microtexture, and optical properties of anthracene and saccharose-based carbons , 1989 .

[7]  B. Durand Kerogen: Insoluble Organic Matter from Sedimentary Rocks , 1980 .

[8]  I. Dunkl,et al.  Towards a Higher Comparability of Geothermometric Data obtained by Raman Spectroscopy of Carbonaceous Material. Part I: Evaluation of Biasing Factors , 2014 .

[9]  M. Amer Raman Spectroscopy for Soft Matter Applications , 2009 .

[10]  S. Corrado,et al.  Diagenetic thermal evolution of organic matter by Raman spectroscopy , 2017 .

[11]  F. Marquis,et al.  Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies , 1998 .

[12]  D. M. Clementz Effect of Oil and Bitumen Saturation on Source-Rock Pyrolysis , 1979 .

[13]  R. Bustin,et al.  Sedimentology of the Late Devonian and Early Mississippian Bakken Formation, Williston Basin , 1995 .

[14]  J. Espitalie,et al.  La pyrolyse Rock-Eval et ses applications. Troisième partie. Rock-Eval Pyrolysis and Its Applications (Part Three) , 2006 .

[15]  A. Knoll,et al.  Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy , 2016 .

[16]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  D. Houseknecht,et al.  Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study , 1998 .

[18]  Hui Jin,et al.  Characterization for Source Rock Potential of the Bakken Shales in the Williston Basin, North Dakota and Montana , 2013 .

[19]  M. Prange,et al.  Kerogen thermal maturity and content of organic-rich mudrocks determined using stochastic linear regression models applied to diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) , 2017 .

[20]  A. Pramudito,et al.  Petroleum geology of the giant Elm Coulee field, Williston Basin , 2009 .

[21]  P. Peng,et al.  Jump in the structure of Type I kerogen revealed from pyrolysis and 13C DP MAS NMR , 2017 .

[22]  J. Disnar,et al.  Guidelines for Rock-Eval analysis of recent marine sediments , 2015 .

[23]  X. Xiao,et al.  Thermal maturity evaluation from inertinites by Raman spectroscopy: The ‘RaMM’ technique , 2014 .

[24]  Khalid L. Alsamadony,et al.  Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation , 2017 .

[25]  J. Rouzaud,et al.  Raman spectra of carbonaceous material in metasediments: a new geothermometer , 2002 .

[27]  R. W. Snyder,et al.  Concerning the Application of FT-IR to the Study of Coal: A Critical Assessment of Band Assignments and the Application of Spectral Analysis Programs , 1981 .

[28]  C. Marshall,et al.  Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia , 2007 .

[29]  R. McCreery,et al.  Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra , 1990 .

[30]  Wei Jiang,et al.  Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics , 2017 .

[31]  Stephen A. Holditch,et al.  Unconventional Oil and Gas Resources Handbook: Evaluation and Development , 2015 .

[32]  H. Edwards,et al.  Understanding the application of Raman spectroscopy to the detection of traces of life. , 2010, Astrobiology.

[33]  Maria Mastalerz,et al.  Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review , 2015, International journal of molecular sciences.

[34]  T. Gentzis,et al.  Characterization of geochemical properties and microstructures of the Bakken Shale in North Dakota , 2017 .

[35]  M. Mastalerz,et al.  Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement , 2015 .

[36]  Douglas Waples,et al.  Organic Geochemistry for Exploration Geologists , 1981 .

[37]  Xiao Li,et al.  Mechanical Properties of Longmaxi Black Organic-Rich Shale Samples from South China under Uniaxial and Triaxial Compression States , 2016 .

[38]  P. Müller,et al.  Structural modifications of kerogen during natural evolution as derived from 13C CP/MAS NMR, IR spectroscopy and Rock-Eval pyrolysis of Toarcian shales , 1988 .

[39]  H. Jacob Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”) , 1989 .

[40]  Guangping Xu,et al.  Assessing thermal maturity beyond the reaches of vitrinite reflectance and Rock-Eval pyrolysis: A case study from the Silurian Qusaiba formation , 2017 .

[41]  P. R. Solomon,et al.  FT-i.r. analysis of coal: 2. Aliphatic and aromatic hydrogen concentration , 1988 .

[42]  J. Jehlička,et al.  Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  A. Clough,et al.  Characterization of Kerogen and Source Rock Maturation Using Solid-State NMR Spectroscopy , 2015 .

[44]  Zhibin Wei,et al.  Assessment of Thermal Evolution of Kerogen Geopolymers with Their Structural Parameters Measured by Solid-State 13C NMR Spectroscopy , 2005 .

[45]  A. Schimmelmann,et al.  D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III , 1999 .

[46]  S. Kelemen,et al.  Maturity trends in Raman spectra from kerogen and coal , 2001 .

[47]  Yibo Wang,et al.  Sensitivity Analysis of Seismic Velocity and Attenuation Variations for Longmaxi Shale during Hydraulic Fracturing Testing in Laboratory , 2017 .

[48]  Julie A. LeFever,et al.  History of Oil Production from the Bakken Formation, North Dakota* , 1991 .

[49]  P. Müller,et al.  Infrared estimates of aliphatic kerogen carbon in sedimentary rocks , 1986 .

[50]  E. Ghanbari,et al.  Evaluating the Impact of Mechanical Properties of Kerogen on Hydraulic Fracturing of Organic Rich Formations , 2018 .

[51]  Chong Lin,et al.  An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO2 , 2018 .

[52]  T. Robl,et al.  Comparison of the HF−HCl and HF−BF3 maceration techniques and the chemistry of resultant organic concentrates , 1993 .

[53]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[54]  Bo Zhang,et al.  A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation , 2016 .

[55]  Bernard P. Tissot,et al.  Diagenesis, Catagenesis and Metagenesis of Organic Matter , 1978 .

[56]  Chong Lin,et al.  Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores , 2016 .

[57]  Kenneth E. Peters,et al.  Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis , 1986 .

[58]  B. Valentim,et al.  Raman spectroscopy of coal macerals and fluidized bed char morphotypes , 2012 .

[59]  N. K. Lünsdorf Raman spectroscopy of dispersed vitrinite — Methodical aspects and correlation with reflectance , 2016 .

[60]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[61]  M. Abrashev,et al.  Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy , 2014 .

[62]  R. Tyson Abundance of Organic Matter in Sediments: TOC, Hydrodynamic Equivalence, Dilution and Flux Effects , 1995 .

[63]  I. Poplett,et al.  Determination of molecular structure of kerogens using 13C NMR spectroscopy: II. The effects of thermal maturation on kerogens from marine sediments , 1992 .

[64]  F. Behar,et al.  Rock-Eval 6 Technology: Performances and Developments , 2001 .

[65]  O. Beyssac,et al.  Evolution of the Raman spectrum of carbonaceous material in low‐grade metasediments of the Glarus Alps (Switzerland) , 2010 .

[66]  T. Robl,et al.  Chemical and Petrographic Classification of Kerogen/Macerals , 1994 .

[67]  G. Eglinton,et al.  Kerogen characterisation by 13C NMR spectroscopy and pyrolysis-mass spectrometry , 1984 .

[68]  B. Simoneit,et al.  13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations , 1982 .

[69]  David D. Tuschel,et al.  Raman spectroscopy to study thermal maturity and elastic modulus of kerogen , 2018 .

[70]  J. Krane,et al.  Analysis of kerogens of miocene shales in a homogenous sedimentary column. A study of maturation using flash pyrolysis techniques and carbon-13 CP-MAS NMR , 1984 .

[71]  J. Pasteris,et al.  Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy , 1993 .

[72]  M. Lewan,et al.  Assessment of undiscovered oil resources in the Bakken and Three Forks Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013 , 2013 .

[73]  Jalel Ben Hmida,et al.  An Artificially Intelligent Technique to Generate Synthetic Geomechanical Well Logs for the Bakken Formation , 2018 .

[74]  F. Miknis,et al.  An NMR survey of United States oil shales , 1984 .

[75]  Jianping Chen,et al.  Using kerogen FTIR parameters for determination of organic facies , 1998 .

[76]  S. Larter,et al.  A pyrolysis-gas chromatographic method for kerogen typing , 1980 .

[77]  M. L. Gorbaty,et al.  Direct characterization of kerogen by x-ray and solid-state **13c nuclear magnetic resonance methods , 2007 .

[78]  F. M. Schell,et al.  Oil-shale analysis by CP/MAS-13C n.m.r. spectroscopy , 1984 .

[79]  J. Saxby,et al.  Effect of anigneous intrusion on oil shale at Rundle (Australia) , 1987 .

[80]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[81]  A. Pomerantz,et al.  Evolution of Kerogen and Bitumen during Thermal Maturation via Semi-Open Pyrolysis Investigated by Infrared Spectroscopy , 2015 .

[82]  Cheng Deyu,et al.  A new method to estimate the oil and gas potentials of coals and kerogens by solid state 13C NMR spectroscopy , 1991 .

[83]  A. S. Mumm,et al.  Microscale organic maturity determination of graptolites using Raman spectroscopy , 2016 .

[84]  S. Reich,et al.  Raman spectroscopy of graphite , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[85]  Xu Chang,et al.  Reconstruction of Hydraulic Fractures Using Passive Ultrasonic Travel-Time Tomography , 2018 .

[86]  X. Xiao,et al.  The relationship between micro-Raman spectral parameters and reflectance of solid bitumen , 2014 .

[87]  B. Valentim,et al.  Micro-Raman spectroscopy of collotelinite, fusinite and macrinite , 2010 .

[88]  J. Rouzaud,et al.  Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study , 2002 .

[89]  Yen‐Hua Chen,et al.  In situ Raman spectroscopy on kerogen at high temperatures and high pressures , 2010, PCM 2010.