Mean value coordinates for arbitrary spherical polygons and polyhedra in $\mathbb{R}^{3}$

Since their introduction, mean value coordinates enjoy ever increasing popularity in computer graphics and computational mathematics because they exhibit a variety of good properties. Most importantly, they are defined in the whole plane which allows interpolation and extrapolation without restrictions. Recently, mean value coordinates were generalized to spheres and to ’3. We show that these spherical and 3D mean value coordinates are well-defined on the whole sphere and the whole space ’3, respectively.

[1]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[2]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[3]  Martin Reimers,et al.  Mean value coordinates in 3D , 2005, Comput. Aided Geom. Des..

[4]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[5]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[6]  Hans-Peter Seidel,et al.  Spherical barycentric coordinates , 2006, SGP '06.

[7]  Kun Zhou,et al.  Subspace gradient domain mesh deformation , 2006, ACM Trans. Graph..

[8]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..