On Varieties of Automata Enriched with an Algebraic Structure (Extended Abstract)
暂无分享,去创建一个
[1] Jorge Almeida,et al. Profinite semigroups and applications , 2005 .
[2] Michal Kunc. Equational description of pseudovarieties of homomorphisms , 2003, RAIRO Theor. Informatics Appl..
[3] Thomas Schwentick,et al. Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.
[4] Jean-Eric Pin,et al. A variety theorem without complementation , 1995 .
[5] Jorge Almeida,et al. Finite Semigroups and Universal Algebra , 1995 .
[6] Ondrej Klíma,et al. Alternative Automata Characterization of Piecewise Testable Languages , 2013, Developments in Language Theory.
[7] Kim G. Larsen,et al. Regular languages definable by Lindström quantifiers , 2003, RAIRO Theor. Informatics Appl..
[8] Jean-Éric Pin,et al. Syntactic Semigroups , 1997, Handbook of Formal Languages.
[9] Mustapha Arfi. Polynomial Operations on Rational Languages , 1987, STACS.
[10] Denis Thérien,et al. Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..
[11] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events , 1962 .
[12] Janusz A. Brzozowski,et al. Syntactic Complexity of - and -Trivial Regular Languages , 2013, DCFS.
[13] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[14] Jean-Eric Pin,et al. A Reiterman theorem for pseudovarieties of finite first-order structures , 1996 .
[15] Jan Reiterman,et al. The Birkhoff theorem for finite algebras , 1982 .
[16] L. Polák. A classification of rational languages by semilattice-orderedmonoids , 2004 .
[17] Jean-Éric Pin. Equational Descriptions of Languages , 2012, Int. J. Found. Comput. Sci..
[18] Libor Polák. Minimalizations of NFA using the universal automaton , 2005, Int. J. Found. Comput. Sci..
[19] Howard Straubing,et al. Actions, wreath products of C-varieties and concatenation product , 2006, Theor. Comput. Sci..
[20] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[21] P. Jeavons. Structural Theory of Automata‚ Semigroups‚ and Universal Algebra , 2003 .
[22] Serge Grigorieff,et al. Duality and Equational Theory of Regular Languages , 2008, ICALP.
[23] Ondrej Klíma,et al. On varieties of meet automata , 2008, Theor. Comput. Sci..
[24] Howard Straubing,et al. An Introduction to Finite Automata and their Connection to Logic , 2010, Modern Applications of Automata Theory.
[25] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[26] Zoltán Ésik,et al. Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..
[27] Benjamin Steinberg,et al. The q-theory of Finite Semigroups , 2008 .
[28] Jacques Stern,et al. Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..
[29] Thomas Place,et al. Separating regular languages with first-order logic , 2014, CSL-LICS.
[30] Jacques Sakarovitch,et al. The universal automaton , 2008, Logic and Automata.
[31] Orna Kupferman,et al. Lattice Automata , 2007, VMCAI.
[32] Janusz A. Brzozowski,et al. Syntactic Complexity of ℛ- and 풥-Trivial Regular Languages , 2014, Int. J. Found. Comput. Sci..
[33] Manfred Kufleitner,et al. On logical hierarchies within FO2-definable languages , 2012, Log. Methods Comput. Sci..
[34] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[35] Ondrej Klíma,et al. On biautomata , 2011, RAIRO Theor. Informatics Appl..
[36] A. N. Trahtman,et al. Piecewise and Local Threshold Testability of DFA , 2001 .
[37] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[38] Pascal Weil,et al. Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.
[39] Howard Straubing,et al. On Logical Descriptions of Regular Languages , 2002, LATIN.
[40] Pascal Weil,et al. Algebraic Recognizability of Languages , 2004, MFCS.
[41] Markus Holzer,et al. Minimization and Characterizations for Biautomata , 2013, Fundam. Informaticae.
[42] Paul Gastin,et al. A Survey on Small Fragments of First-Order Logic over Finite Words , 2008, Int. J. Found. Comput. Sci..
[43] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[44] Szabolcs Iván,et al. Some Varieties of Finite Tree Automata Related to Restricted Temporal Logics , 2008, Fundam. Informaticae.