On Varieties of Automata Enriched with an Algebraic Structure (Extended Abstract)

Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular languages with pseudovarieties of finite monoids. Various modifications of this correspondence related more general classes of regular languages with classes of more complex algebraic objects. Such generalized varieties also have natural counterparts formed by classes of finite automata equipped with a certain additional algebraic structure. In this survey, we overview several variants of such varieties of enriched automata.

[1]  Jorge Almeida,et al.  Profinite semigroups and applications , 2005 .

[2]  Michal Kunc Equational description of pseudovarieties of homomorphisms , 2003, RAIRO Theor. Informatics Appl..

[3]  Thomas Schwentick,et al.  Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.

[4]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[5]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .

[6]  Ondrej Klíma,et al.  Alternative Automata Characterization of Piecewise Testable Languages , 2013, Developments in Language Theory.

[7]  Kim G. Larsen,et al.  Regular languages definable by Lindström quantifiers , 2003, RAIRO Theor. Informatics Appl..

[8]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[9]  Mustapha Arfi Polynomial Operations on Rational Languages , 1987, STACS.

[10]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[11]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[12]  Janusz A. Brzozowski,et al.  Syntactic Complexity of - and -Trivial Regular Languages , 2013, DCFS.

[13]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[14]  Jean-Eric Pin,et al.  A Reiterman theorem for pseudovarieties of finite first-order structures , 1996 .

[15]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[16]  L. Polák A classification of rational languages by semilattice-orderedmonoids , 2004 .

[17]  Jean-Éric Pin Equational Descriptions of Languages , 2012, Int. J. Found. Comput. Sci..

[18]  Libor Polák Minimalizations of NFA using the universal automaton , 2005, Int. J. Found. Comput. Sci..

[19]  Howard Straubing,et al.  Actions, wreath products of C-varieties and concatenation product , 2006, Theor. Comput. Sci..

[20]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[21]  P. Jeavons Structural Theory of Automata‚ Semigroups‚ and Universal Algebra , 2003 .

[22]  Serge Grigorieff,et al.  Duality and Equational Theory of Regular Languages , 2008, ICALP.

[23]  Ondrej Klíma,et al.  On varieties of meet automata , 2008, Theor. Comput. Sci..

[24]  Howard Straubing,et al.  An Introduction to Finite Automata and their Connection to Logic , 2010, Modern Applications of Automata Theory.

[25]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[26]  Zoltán Ésik,et al.  Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..

[27]  Benjamin Steinberg,et al.  The q-theory of Finite Semigroups , 2008 .

[28]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[29]  Thomas Place,et al.  Separating regular languages with first-order logic , 2014, CSL-LICS.

[30]  Jacques Sakarovitch,et al.  The universal automaton , 2008, Logic and Automata.

[31]  Orna Kupferman,et al.  Lattice Automata , 2007, VMCAI.

[32]  Janusz A. Brzozowski,et al.  Syntactic Complexity of ℛ- and 풥-Trivial Regular Languages , 2014, Int. J. Found. Comput. Sci..

[33]  Manfred Kufleitner,et al.  On logical hierarchies within FO2-definable languages , 2012, Log. Methods Comput. Sci..

[34]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[35]  Ondrej Klíma,et al.  On biautomata , 2011, RAIRO Theor. Informatics Appl..

[36]  A. N. Trahtman,et al.  Piecewise and Local Threshold Testability of DFA , 2001 .

[37]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[38]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[39]  Howard Straubing,et al.  On Logical Descriptions of Regular Languages , 2002, LATIN.

[40]  Pascal Weil,et al.  Algebraic Recognizability of Languages , 2004, MFCS.

[41]  Markus Holzer,et al.  Minimization and Characterizations for Biautomata , 2013, Fundam. Informaticae.

[42]  Paul Gastin,et al.  A Survey on Small Fragments of First-Order Logic over Finite Words , 2008, Int. J. Found. Comput. Sci..

[43]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[44]  Szabolcs Iván,et al.  Some Varieties of Finite Tree Automata Related to Restricted Temporal Logics , 2008, Fundam. Informaticae.