Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires.

The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 <110> perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth.

[1]  S. T. Picraux,et al.  Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. , 2010, Nano letters.

[2]  J. Appenzeller,et al.  Transport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells. , 2011, Nano letters.

[3]  Long-Qing Chen,et al.  Equilibrium strain-energy analysis of coherently strained core- shell nanowires , 2008 .

[4]  K. Kavanagh,et al.  Transport and strain relaxation in wurtzite InAs–GaAs core-shell heterowires , 2011 .

[5]  E. Kasper Strained Layer Superlattices , 1987 .

[6]  K. Kavanagh,et al.  Faster radial strain relaxation in InAs-GaAs core-shell heterowires , 2012 .

[7]  Charles M Lieber,et al.  One-dimensional hole gas in germanium/silicon nanowire heterostructures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Shadi A. Dayeh,et al.  Electron transport in indium arsenide nanowires , 2010 .

[9]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[10]  S. T. Picraux,et al.  Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. , 2011, Nano letters.

[11]  D. C. Houghton,et al.  Strain relaxation kinetics in Si(1-x)Ge(x)/Si heterostructures , 1991 .

[12]  Mario G. Ancona,et al.  Engineering of strained III–V heterostructures for high hole mobility , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[13]  From bare Ge nanowire to Ge/Si core/shell nanowires: A first-principles study , 2009 .

[14]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[15]  J. Colin Prismatic dislocation loops in strained core-shell nanowire heterostructures , 2010 .

[16]  P. Griffin,et al.  Critical thickness enhancement of epitaxial SiGe films grown on small structures , 2005 .

[17]  G. Cohen,et al.  Elastic strain relaxation in free-standing SiGe/Si structures , 2004 .

[18]  Aaron Gin,et al.  Advanced core/multishell germanium/silicon nanowire heterostructures: Morphology and transport , 2011 .

[19]  E. Yu,et al.  Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures , 2006 .

[20]  P. McIntyre,et al.  Inhibiting strain-induced surface roughening: dislocation-free Ge/Si and Ge/SiGe core-shell nanowires. , 2009, Nano letters.

[21]  K. Kavanagh,et al.  Misfit dislocations in nanowire heterostructures , 2010 .

[22]  F. Ross,et al.  Dislocated epitaxial islands. , 2000, Physical review letters.

[23]  P. McIntyre,et al.  Morphological instability of misfit-strained core-shell nanowires , 2008 .

[24]  P. McIntyre,et al.  Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. , 2008, Nano letters.

[25]  J. Chaboche,et al.  Dislocations and elastic anisotropy in heteroepitaxial metallic thin films , 2003 .

[26]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[27]  Shadi A. Dayeh,et al.  Advanced core/multishell germanium/silicon nanowire heterostructures: The Au-diffusion bottleneck , 2011 .

[28]  Gerhard Klimeck,et al.  Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. , 2006, Nano letters.

[29]  M. Feng,et al.  12.5 nm base pseudomorphic heterojunction bipolar transistors achieving fT=710GHz and fMAX=340GHz , 2005 .

[30]  Electronic properties of strained Si/Ge core-shell nanowires , 2010, 1010.1555.

[31]  Philip Chiu,et al.  InGaP/GaAs/InGaAs 41% concentrator cells using bi-facial epigrowth , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[32]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[33]  K. Schwarz Discrete dislocation dynamics study of strained-layer relaxation. , 2003, Physical review letters.

[34]  S. Ossicini,et al.  Reduced quantum confinement effect and electron-hole separation in SiGe nanowires , 2009 .

[35]  F. Schäffler,et al.  Misfit dislocation gettering by substrate pit-patterning in SiGe films on Si(001) , 2012 .

[36]  K. Ismail Effect of dislocations in strained Si/SiGe on electron mobility , 1996 .

[37]  T. Pearsall Strained-Layer superlattices : materials science and technology , 1991 .

[38]  H. Shtrikman,et al.  InAs/GaAs Core–Shell Nanowires , 2011 .

[39]  Bruce M. Clemens,et al.  Strain relaxation kinetics in Si1–xGex/Si heterostructures , 1989 .