Averaging Techniques for the Effective Numerical Solution of Symm's Integral Equation of the First Kind

Averaging techniques for finite element error control, occasionally called ZZ estimators for the gradient recovery, enjoy a high popularity in engineering because of their striking simplicity and universality: One does not even require a PDE to apply the nonexpensive post-processing routines. Recently, averaging techniques have been mathematically proved to be reliable and efficient for various applications of the finite element method. This paper establishes a class of averaging error estimators for boundary integral methods. Symm's integral equation of the first kind with a nonlocal single-layer integral operator serves as a model equation studied both theoretically and numerically. We introduce four new error estimators which are proven to be reliable and efficient up to terms of higher order. The higher-order terms depend on the regularity of the exact solution. Several numerical experiments illustrate the theoretical results and show that the [normally unknown] error is sharply estimated by the proposed estimators, i.e., error and estimators almost coincide.

[1]  E. P. Stephan,et al.  The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .

[2]  Carsten Carstensen,et al.  Numerische Mathematik A posteriori error estimate and h-adaptive algorithm on surfaces for Symm ’ s integral equation , 2001 .

[3]  E. Stephan,et al.  The hp-Version of the Boundary Element Method on Polygons , 1996 .

[4]  Olaf Steinbach Adaptive Boundary Element Methods Based on Computational Schemes for Sobolev Norms , 2000, SIAM J. Sci. Comput..

[5]  Miloslav Feistauer,et al.  Asymptotic and a posteriori error estimates for boundary element solutions of hypersingular integral equations , 1996 .

[6]  Carsten Carstensen,et al.  A posteriori error estimates for hp--boundary element methods , 1996 .

[7]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[8]  Carsten Carstensen,et al.  Adaptive boundary element methods and adaptive finite element and boundary element coupling , 1995 .

[9]  Birgit Faermann,et al.  Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods Part II. The three-dimensional case , 2002, Numerische Mathematik.

[10]  Olaf Steinbach,et al.  A new a posteriori error estimator in adaptive direct boundary element method , 2000 .

[11]  Wolfgang L. Wendland,et al.  Adaptive boundary element methods for strongly elliptic integral equations , 1988 .

[12]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[13]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[14]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[15]  Carsten Carstensen,et al.  Averaging Techniques for the A Posteriori BEM Error Control for a Hypersingular Integral Equation in Two Dimensions , 2007, SIAM J. Sci. Comput..

[16]  E. Rank A-posteriori Error Estimates and Adaptive Refinement for some Boundary Integral Element Methods , 1984 .

[17]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[18]  W. Hackbusch,et al.  Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .

[19]  G. A. Chandler,et al.  Spline qualocation methods for boundary integral equations , 1990 .

[20]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[21]  B Faermann Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case , 2000 .

[22]  E. P. Stephan,et al.  h -adaptive boundary element schemes , 1995 .

[23]  Carsten Carstensen,et al.  Residual-based a posteriori error estimate for hypersingular equation on surfaces , 2004, Numerische Mathematik.

[24]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[25]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .

[26]  De-hao Yu A-Posteriori Error Estimates and Adaptive Approaches for some Boundary Element Methods , 1987 .

[27]  Norbert Heuer,et al.  Exponential convergence of the hp-version for the boundary element method on open surfaces , 1999, Numerische Mathematik.

[28]  CARSTEN CARSTENSEN,et al.  A Posteriori Error Control in Adaptive Qualocation Boundary Element Analysis for a Logarithmic-Kernel Integral Equation of the First Kind , 2003, SIAM J. Sci. Comput..

[29]  Carsten Carstensen,et al.  Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .

[30]  Glaucio H. Paulino,et al.  Analysis of hypersingular residual error estimates in boundary element methods for potential problems , 1999 .

[31]  Carsten Carstensen,et al.  Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind , 2001 .

[32]  Birgit Faermann,et al.  Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations , 1998 .

[33]  Ernst P. Stephan,et al.  Adaptive multilevel BEM for acoustic scattering , 1997 .

[34]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[35]  Carsten Carstensen,et al.  Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes , 1996, Math. Comput..

[36]  Christoph Schwab,et al.  On the extraction technique in boundary integral equations , 1999, Mathematics of Computation.

[37]  Ernst P. Stephan,et al.  Two-level methods for the single layer potential in ℝ3 , 1998, Computing.