Functional analysis techniques to improve similarity matrices in discrimination problems

[1]  Kojiro Yano,et al.  Improved prediction of protein interaction from microarray data using asymmetric correlation , 2010, ICCS.

[2]  S. Smale,et al.  Geometry on Probability Spaces , 2009 .

[3]  Manuel Ammann,et al.  Asymmetric dependence patterns in financial time series , 2008 .

[4]  B. Schölkopf,et al.  Kernel methods in machine learning , 2007, math/0701907.

[5]  Javier M. Moguerza,et al.  Support Vector Machines with Applications , 2006, math/0612817.

[6]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[7]  Manuel Martín-Merino,et al.  Extending the SOM Algorithm to Visualize Word Relationships , 2005, IDA.

[8]  C. Furusawa,et al.  Zipf's law in gene expression. , 2002, Physical review letters.

[9]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[10]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[11]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[12]  P. Kantor Foundations of Statistical Natural Language Processing , 2001, Information Retrieval.

[13]  R. A. Lorentz,et al.  Multivariate Hermite interpolation by algebraic polynomials: a survey , 2000 .

[14]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[15]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[16]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[17]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[18]  J. Gower,et al.  Metric and Euclidean properties of dissimilarity coefficients , 1986 .

[19]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[20]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[21]  Javier M. Moguerza,et al.  Methods for the combination of kernel matrices within a support vector framework , 2009, Machine Learning.

[22]  R. Bhatia Positive Definite Matrices , 2007 .

[23]  Alberto Muñoz,et al.  Visualizing asymmetric proximities with SOM and MDS models , 2005, Neurocomputing.

[24]  S. Canu,et al.  Frames , Reproducing Kernels , Regularization and Learning , 2005 .

[25]  Jean-Paul Calvi on Multivariate Polynomial Interpolation , 2005 .

[26]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[27]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[28]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[29]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .