Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.

[1]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[2]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[3]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[4]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[5]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[6]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[7]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[8]  R. Benz,et al.  Ion selectivity of gram-negative bacterial porins , 1985, Journal of bacteriology.

[9]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[10]  R. Benz,et al.  Permeation of hydrophilic molecules through the outer membrane of gram‐negativ bacteria , 1988 .

[11]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[12]  R. Mills Self-diffusion in electrolyte solutions , 1989 .

[13]  B. Jap,et al.  Biophysics of the structure and function of porins , 1990, Quarterly Reviews of Biophysics.

[14]  M Karplus,et al.  Ion transport in a model gramicidin channel. Structure and thermodynamics. , 1991, Biophysical journal.

[15]  L. K. Buehler,et al.  Plasticity of Escherichia coli porin channels. Dependence of their conductance on strain and lipid environment. , 1991, The Journal of biological chemistry.

[16]  Benoît Roux,et al.  Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .

[17]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[18]  R. Benz,et al.  The major outer membrane protein of Acidovorax delafieldii is an anion-selective porin , 1991, Journal of bacteriology.

[19]  G. Schulz,et al.  Structure of porin refined at 1.8 A resolution. , 1992, Journal of molecular biology.

[20]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[21]  E Jakobsson,et al.  The nature of ion and water barrier crossings in a simulated ion channel. , 1993, Biophysical journal.

[22]  H. Nikaido Transport across the bacterial outer membrane , 1993, Journal of bioenergetics and biomembranes.

[23]  R M Venable,et al.  Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. , 1993, Science.

[24]  H. Ohtaki,et al.  Structure and dynamics of hydrated ions , 1993 .

[25]  G. Schulz,et al.  STRUCTURE OF PORIN REFINED AT 1.8 ANGSTROMS RESOLUTION , 1993 .

[26]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[27]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[28]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Karshikoff,et al.  Electrostatic properties of two porin channels from Escherichia coli. , 1994, Journal of molecular biology.

[30]  On the stability and plastic properties of the interior L3 loop in R. capsulatus porin. A molecular dynamics study. , 1994, Protein engineering.

[31]  G. Schulz,et al.  Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus. , 1994, Journal of molecular biology.

[32]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[33]  A. Engel,et al.  Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. , 1995, Science.

[34]  R. Pastor,et al.  Computer simulation of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer , 1995 .

[35]  O. Tapia,et al.  L3 loop-mediated mechanisms of pore closing in porin: a molecular dynamics perturbation approach. , 1995, Protein engineering.

[36]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[37]  J. Rosenbusch,et al.  Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution , 1995, Science.

[38]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[39]  Bernard R. Brooks,et al.  Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water , 1995 .

[40]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[41]  G. Schulz,et al.  Porins: general to specific, native to engineered passive pores. , 1996, Current opinion in structural biology.

[42]  B. Roux,et al.  Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[43]  P McGill,et al.  Boundary conditions for- single-ion diffusion. , 1996, Biophysical journal.

[44]  Benoît Roux,et al.  Biological membranes : a molecular perspective from computation and experiment , 1996 .

[45]  Molecular Dynamics of Pf1 Coat Protein in a Phospholipid Bilayer , 1996 .

[46]  B. Brooks,et al.  Effect of Electrostatic Force Truncation on Interfacial and Transport Properties of Water , 1996 .

[47]  G. Rummel,et al.  Structural and Functional Characterization of OmpF Porin Mutants Selected for Larger Pore Size , 1996, The Journal of Biological Chemistry.

[48]  N. Saint,et al.  Structural and Functional Characterization of OmpF Porin Mutants Selected for Larger Pore Size , 1996, The Journal of Biological Chemistry.

[49]  Aatto Laaksonen,et al.  Concentration Effects in Aqueous NaCl Solutions. A Molecular Dynamics Simulation , 1996 .

[50]  Alexander D. MacKerell,et al.  An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications , 1996 .

[51]  M. Karplus,et al.  Computer simulations of the OmpF porin from the outer membrane of Escherichia coli. , 1997, Biophysical journal.

[52]  P. Phale,et al.  Voltage gating of Escherichia coli porin channels: role of the constriction loop. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Beglov,et al.  Atomic Radii for Continuum Electrostatics Calculations Based on Molecular Dynamics Free Energy Simulations , 1997 .

[54]  B. Roux Influence of the membrane potential on the free energy of an intrinsic protein. , 1997, Biophysical journal.

[55]  Tilman Schirmer General and specific porins from bacterial outer membranes. , 1998, Journal of structural biology.

[56]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[57]  H. Berendsen,et al.  A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field , 1998 .

[58]  J. Lakey,et al.  Voltage-gating of Escherichia coli porin: a cystine-scanning mutagenesis study of loop 3. , 1998, Journal of molecular biology.

[59]  B. Roux,et al.  Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. , 1998, Biophysical journal.

[60]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[61]  Y. Komeiji,et al.  Computational Observation of an Ion Permeation Through a Channel Protein , 1998, Bioscience reports.

[62]  J. Rosenbusch,et al.  Stability of trimeric OmpF porin: the contributions of the latching loop L2. , 1998, Biochemistry.

[63]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[64]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[65]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[66]  G. R. Smith,et al.  Effective diffusion coefficients of K+ and Cl- ions in ion channel models. , 1999, Biophysical chemistry.

[67]  L. Degrève,et al.  LARGE IONIC CLUSTERS IN CONCENTRATED AQUEOUS NACL SOLUTION , 1999 .

[68]  P. Phale,et al.  Brownian dynamics simulation of ion flow through porin channels. , 1999, Journal of molecular biology.

[69]  A. Engel,et al.  Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. , 1999, Journal of molecular biology.

[70]  S. Buchanan,et al.  Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. , 1999, Current opinion in structural biology.

[71]  R. Dutzler,et al.  Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. , 1999, Structure.

[72]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[73]  S. Chung,et al.  Molecular dynamics estimates of ion diffusion in model hydrophobic and KcsA potassium channels. , 2000, Biophysical chemistry.

[74]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[75]  B. Roux,et al.  Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. , 2000, Biophysical journal.

[76]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .

[77]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[78]  J. Rosenbusch,et al.  Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. , 2001, Biochemistry.

[79]  Michael W. Mahoney,et al.  Diffusion constant of the TIP5P model of liquid water , 2001 .