Phase space structure of triatomic molecules
暂无分享,去创建一个
[1] F. Verhulst,et al. Asymptotic Integrability and Periodic Solutions of a Hamiltonian System in $1:2:2$-Resonance , 1984 .
[2] G. S. Ezra,et al. ASSIGNING VIBRATIONAL SPECTRA OF HIGHLY EXCITED MOLECULES : CLASSICAL AND QUANTUM VIBRATIONAL DYNAMICS OF THE H2O MOLECULE , 1996 .
[3] G. Herzberg. Infrared and raman spectra , 1964 .
[4] J. L. Kinsey,et al. Broad spectral features in the stimulated emission pumping spectrum of acetylene , 1988 .
[5] W. Harter. SU(2) coordinate geometry for semiclassical theory of rotors and oscillators , 1986 .
[6] M. E. Kellman,et al. Catastrophe map classification of the generalized normal–local transition in Fermi resonance spectra , 1990 .
[7] Robert L. Weber,et al. Sources of Quantum Mechanics , 1968 .
[8] W. J. Lafferty,et al. The high resolution infrared spectrum of the 2ν2 + ν3 and ν1 + ν2 + ν3 bands of 14N16O2 , 1977 .
[9] L. Fried,et al. Semiclassical quantization using classical perturbation theory: Algebraic quantization of multidimensional systems , 1987 .
[10] G. S. Ezra. Periodic orbit analysis of molecular vibrational spectra: Spectral patterns and dynamical bifurcations in Fermi resonant systems , 1996 .
[11] N. Handy,et al. Theoretical rotational–vibrational spectrum of H2S , 1989 .
[12] Heller,et al. Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy. , 1991, Physical review letters.
[13] K. Miyazaki,et al. Microwave spectrum of chlorine dioxide in excited vibrational states , 1986 .
[14] Robert W. Field,et al. Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping , 1995 .
[15] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[16] M. E. Kellman. Algebraic resonance dynamics of the normal/local transition from experimental spectra of ABA triatomics , 1985 .
[17] J. Baggott. Normal modes and local modes in H2 X: beyond the x, K relations , 1988 .
[18] C. Rankin,et al. The Classical S-Matrix: Linear Reactive Collisions of H + Cl2 , 1971 .
[19] J. Champion,et al. Manifestation of bifurcations and diabolic points in molecular energy spectra , 1990 .
[20] W. Heisenberg. A quantum-theoretical reinterpretation of kinematic and mechanical relations , 1925 .
[21] M. E. Kellman,et al. Phase space bifurcation structure and the generalized local-to-normal transition in resonantly coupled vibrations , 1990 .
[22] K. Lehmann. On the relation of Child and Lawton’s harmonically coupled anharmonic–oscillator model and Darling–Dennison couplinga) , 1983 .
[23] John P. Rose,et al. Spectral patterns and dynamical bifurcation analysis of highly excited vibrational spectra , 1995 .
[24] J. Rose,et al. Assigning spectra of chaotic molecules with diabatic correlation diagrams , 1996 .
[25] M. E. Kellman,et al. Potential energy surfaces from highly excited spectra using the bootstrap fitting method: Two‐dimensional surfaces for water and ozone , 1991 .
[26] A. Barbe,et al. Microwave and infrared study of the ν2 state of 16O3 and identification of the (ν3 + ν2)−ν2 band lines at 10 μm , 1978 .
[27] Allan N. Kaufman,et al. Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories , 1979 .
[28] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[29] R. Seydel. From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .
[30] Ralph Abraham,et al. Foundations Of Mechanics , 2019 .
[31] Els van der Aa. First-order resonances in three-degrees-of-freedom systems , 1983 .
[32] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .
[33] R. Prosmiti,et al. Periodic orbits, bifurcation diagrams and the spectroscopy of C2H2 system , 1995 .
[34] A. G. Robiette,et al. On the relationship of normal modes to local modes in molecular vibrations , 1985 .
[35] M. E. Kellman,et al. New assignment of Fermi resonance spectra , 1990 .
[36] Joseph B. Keller,et al. Corrected bohr-sommerfeld quantum conditions for nonseparable systems , 1958 .
[37] QUALITATIVE ANALYSIS OF VIBRATIONAL POLYADS: N-MODE CASE , 1989 .
[38] A. Barbe,et al. Infrared spectra of 16O3 and 18O3: Darling and Dennison resonance and anharmonic potential function of ozone , 1974 .
[39] R. Redding,et al. The 4750 Å band system of chlorine dioxide , 1969 .
[40] C. Jaffé. Comment on: ‘‘Semiclassical phase space evolution of Fermi resonance spectra’’ , 1988 .
[41] Eric J. Heller,et al. Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .
[42] Michael J. Davis. Analysis of highly excited vibrational eigenstates , 1995 .
[43] J. H. Van Vleck,et al. The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics , 1928 .
[44] M. E. Kellman,et al. Unified semiclassical dynamics for molecular resonance spectra , 1989 .
[45] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[46] L. L. Lohr,et al. Ab initio synthesis of the ozone ultraviolet continuum , 1987 .
[47] George Haller,et al. Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems , 1996 .
[48] David Potter. Computational physics , 1973 .
[49] M. E. Kellman. Group theory of coupled oscillators: Normal modes as symmetry breaking , 1982 .
[50] M. E. Kellman,et al. ASSIGNING VIBRATIONAL SPECTRA OF CHAOTIC MOLECULES , 1995 .
[51] Alan Weinstein,et al. Normal modes for nonlinear hamiltonian systems , 1973 .
[52] Calculation of linear stability boundaries for equilibria of Hamiltonian systems , 1987 .
[53] Guozhen Wu. The quasi-separable semiclassical dynamical subspace of strong Fermi resonance under SU(3) algebra , 1992 .
[54] M. E. Kellman. Algebraic methods in spectroscopy. , 1995, Annual review of physical chemistry.