Breaking the Depth Dependency of Phototherapy with Cerenkov Radiation and Low Radiance Responsive Nanophotosensitizers

[1]  Tayyaba Hasan,et al.  Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates , 2014, Proceedings of the National Academy of Sciences.

[2]  Yong Ding,et al.  Self-Illuminating 64Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging , 2014, Journal of the American Chemical Society.

[3]  Samuel Achilefu,et al.  Activatable probes based on distance-dependent luminescence associated with Cerenkov radiation. , 2013, Angewandte Chemie.

[4]  Jan Grimm,et al.  Quantitative imaging of disease signatures through radioactive decay signal conversion , 2013, Nature Medicine.

[5]  Carlo Cavedon,et al.  First human Cerenkography , 2013, Journal of biomedical optics.

[6]  V. Kale,et al.  Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1α-Neuropilin-1 Axis , 2012, PloS one.

[7]  B. Graff,et al.  On the Use of Bis(cyclopentadienyl)titanium(IV) Dichloride in Visible-Light-Induced Ring-Opening Photopolymerization , 2012 .

[8]  F. Tuya,et al.  A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps , 2012, PloS one.

[9]  Simon R. Cherry,et al.  In vivo Cerenkov luminescence imaging: a new tool for molecular imaging , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Johan Axelsson,et al.  Cerenkov emission induced by external beam radiation stimulates molecular fluorescence. , 2011, Medical physics.

[11]  Riccardo Calandrino,et al.  Multispectral Cerenkov luminescence tomography for small animal optical imaging. , 2011, Optics express.

[12]  Manivannan Ethirajan,et al.  The role of porphyrin chemistry in tumor imaging and photodynamic therapy. , 2011, Chemical Society reviews.

[13]  Hashim U. Ahmed,et al.  Handbook of Nanophysics , 2010 .

[14]  Hong Huang,et al.  Effect of polyethylene glycol on hydrophilic TiO2 films: Porosity-driven superhydrophilicity , 2010 .

[15]  Jeffrey I. Zink,et al.  Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. , 2010, Environmental science & technology.

[16]  Sanjiv S. Gambhir,et al.  Molecular Optical Imaging with Radioactive Probes , 2010, PloS one.

[17]  Klaus Sattler,et al.  Handbook of nanophysics , 2010 .

[18]  Jinshun Zhao,et al.  Titanium Dioxide (TiO2) Nanoparticles Induce JB6 Cell Apoptosis Through Activation of the Caspase-8/Bid and Mitochondrial Pathways , 2009, Journal of toxicology and environmental health. Part A.

[19]  S R Cherry,et al.  Optical imaging of Cerenkov light generation from positron-emitting radiotracers , 2009, Physics in medicine and biology.

[20]  Barry Lai,et al.  A high-performance nanobio photocatalyst for targeted brain cancer therapy. , 2009, Nano letters.

[21]  Simon R. Cherry,et al.  PET: Physics, Instrumentation, and Scanners , 2006 .

[22]  J. Fitzpatrick,et al.  Novel titanocene anti-cancer drugs and their effect on apoptosis and the apoptotic pathway in prostate cancer cells , 2006, Apoptosis.

[23]  D. Bowman The Amazingly Versatile Titanocene Derivatives , 2006 .

[24]  J. Scaiano,et al.  Mechanism of action of sensors for reactive oxygen species based on fluorescein-phenol coupling: the case of 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid. , 2006, Organic & biomolecular chemistry.

[25]  Bruce D Cheson,et al.  Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development , 2005, Clinical Cancer Research.

[26]  Jörg Maser,et al.  Biology of TiO2–oligonucleotide nanocomposites , 2003, Nature materials.

[27]  R. Sastre,et al.  The efficiency of titanocene as photoinitiator in the polymerization of dental formulations , 2003, Journal of biomaterials science. Polymer edition.

[28]  Hongzhe Sun,et al.  Targeted Drug Delivery via the Transferrin Receptor-Mediated Endocytosis Pathway , 2002, Pharmacological Reviews.

[29]  N. Kröger,et al.  Phase II Clinical Trial of Titanocene Dichloride in Patients with Metastatic Breast Cancer , 2000, Oncology Research and Treatment.

[30]  H. Sperling,et al.  Phase II trial of titanocene dichloride in advanced renal-cell carcinoma , 1998, Cancer Chemotherapy and Pharmacology.

[31]  Nicholas J. Turro,et al.  A New Method To Determine the Generation of Hydroxyl Radicals in Illuminated TiO2 Suspensions , 1997 .

[32]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[33]  A. G. Davies,et al.  An ESR study of the photolysis of dicyclopentadienyltitanium dichloride , 1983 .

[34]  D. Mason,et al.  Transferrin receptors in human tissues: their distribution and possible clinical relevance. , 1983, Journal of clinical pathology.

[35]  A. Ciechanover,et al.  pH and the recycling of transferrin during receptor-mediated endocytosis. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Clearfield,et al.  Structural Studies of (π-C5H5)2MX2 Complexes and their Derivatives. The Structure of Bis(π-cyclopentadienyl)titanium Dichloride , 1975 .

[37]  A. Clearfield,et al.  Structural studies of (π-C5H5)2MX2 complexes and their derivatives , 1974 .

[38]  H. Boehm.,et al.  Acidic and basic properties of hydroxylated metal oxide surfaces , 1971 .

[39]  S. Brown,et al.  Cerenkov radiation and its applications , 1955 .