Stochastic processes with non-additive fluctuations

We present a comparison of the Fokker-Planck equations obtained by the Ito prescription and by the Stratonovich prescription for physical systems described by a Langevin equation with non-additive fluctuations. Our main conclusion is that the Stratonovich prescription is the one that should always be used to describe physical systems. This conclusion is shown to be consistent with results obtained from path integral and Master equation approaches.

[1]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[2]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[3]  R. Dashen Path integrals for waves in random media , 1977 .

[4]  Adi R. Bulsara,et al.  Stochastic processes with non-additive fluctuations: II. Some applications of Itô and Stratonovich calculus , 1979 .

[5]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[6]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[7]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[8]  D. Ryter Langevin equations and stochastic integrals , 1978 .

[9]  H. Haken Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems , 1975 .

[10]  Hermann Haken,et al.  Generalized Onsager-Machlup function and classes of path integral solutions of the Fokker-Planck equation and the master equation , 1976 .

[11]  W. Horsthemke,et al.  The influence of external noise on non-equilibrium phase transitions , 1976 .

[12]  Melvin Lax,et al.  Classical Noise IV: Langevin Methods , 1966 .

[13]  Richard E. Mortensen,et al.  Mathematical problems of modeling stochastic nonlinear dynamic systems , 1969 .

[14]  N. G. van Kampen,et al.  Stochastic differential equations , 1976 .

[15]  J. Ross,et al.  Statistical reduction for strongly driven simple quantum systems , 1978 .

[16]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[17]  George H. Weiss,et al.  Stochastic theory of nonlinear rate processes with multiple stationary states , 1977 .

[18]  R. Kubo Stochastic theory of magnetic resonance , 1957 .

[19]  J. Keizer On the macroscopic equivalence of descriptions of fluctuations for chemical reactions , 1977 .

[20]  D. Bedeaux Equivalence of the master equation and the Langevin equation , 1977 .

[21]  R. H. Terwiel Projection operator method applied to stochastic linear differential equations , 1974 .

[22]  Peter Hänggi,et al.  Correlation functions and masterequations of generalized (non-Markovian) Langevin equations , 1978 .

[23]  René Lefever,et al.  White and coloured external noise and transition phenomena in nonlinear systems , 1978 .

[24]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[25]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[26]  J. Doob Stochastic processes , 1953 .

[27]  A. T. Bharucha-Reid,et al.  Probabilistic methods in applied mathematics , 1968 .

[28]  T. K. Caughey,et al.  A Controversy in Problems Involving Random Parametric Excitation , 1965 .

[29]  Bruce J. West Ray paths in a fluctuating environment , 1978 .