Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe.

A Dirac nodal-line semimetal phase, which represents a new quantum state of topological materials, has been experimentally realized only in a few systems, including PbTaSe_{2}, PtSn_{4}, and ZrSiS. In this Letter, we report evidence of nodal-line fermions in ZrSiSe and ZrSiTe probed in de Haas-van Alphen quantum oscillations. Although ZrSiSe and ZrSiTe share a similar layered structure with ZrSiS, our studies show the Fermi surface (FS) enclosing a Dirac nodal line has a 2D character in ZrSiTe, in contrast with 3D-like FS in ZrSiSe and ZrSiS. Another important property revealed in our experiment is that the nodal-line fermion density in this family of materials (∼10^{20}  cm^{-3}) is much higher than the Dirac fermion density of other topological materials with discrete nodes. In addition, we have demonstrated ZrSiSe and ZrSiTe single crystals can be thinned down to 2D atomic thin layers through microexfoliation, which offers the first platform to explore exotic properties of topological nodal-line fermions in low dimensions.

[1]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[2]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[3]  S. M. Walker,et al.  Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.

[4]  Z. J. Wang,et al.  Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 , 2016, 1604.02116.

[5]  Yan-Feng Chen,et al.  Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals , 2016, 1604.01864.

[6]  Z. Mao,et al.  Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations , 2016, 1604.01567.

[7]  Z. Mao,et al.  Evidence of Dirac cones with 3D character probed by dHvA oscillations in nodal-line semimetal ZrSiS , 2016 .

[8]  Lin Zhao,et al.  Electronic Evidence for Type II Weyl Semimetal State in MoTe2 , 2016, 1604.01706.

[9]  Su-Yang Xu,et al.  Observation of Topological Nodal Fermion Semimetal Phase in ZrSiS , 2016, 1604.00720.

[10]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[11]  Rong Zhang,et al.  Evidence of both surface and bulk Dirac bands in ZrSiS and the unconventional magnetoresistance , 2016, 1604.00108.

[12]  B. Lotsch,et al.  Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS , 2016, Science Advances.

[13]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[14]  Su-Yang Xu,et al.  Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials , 2016, 1603.07318.

[15]  B. Satpati,et al.  Titanic magnetoresistance and signature of non-degenerate Dirac nodes in ZrSiS , 2016 .

[16]  Z. Fang,et al.  Emergence of topological bands on the surface of ZrSnTe crystal , 2016, 1601.07294.

[17]  T. Qian,et al.  Two-dimensional topological insulator emergent on the surface of ZrSnTe crystal , 2016 .

[18]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[19]  X. Dai,et al.  Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure , 2015, 1509.01686.

[20]  B. Lotsch,et al.  Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS , 2015, Nature Communications.

[21]  Zhongkai Liu,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[22]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[23]  D. Graf,et al.  π Berry phase and Zeeman splitting of Weyl semimetal TaP , 2015, Scientific Reports.

[24]  Timur K. Kim,et al.  Time-Reversal Symmetry Breaking Type-II Weyl State in YbMnBi2 , 2015, 1507.04847.

[25]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[26]  X. Dai,et al.  Observation of Weyl nodes in TaAs , 2015, Nature Physics.

[27]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[28]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[29]  C. Felser,et al.  Linear magnetoresistance caused by mobility fluctuations in n-doped Cd(3)As(2). , 2014, Physical review letters.

[30]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[31]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[32]  Yoichi Ando,et al.  Topological Insulator Materials , 2013, 1304.5693.

[33]  C. Hurd,et al.  The Hall effect in metals and alloys , 2012 .

[34]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[35]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[36]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[37]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[38]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[39]  Chunsheng Wang,et al.  Main Group Element Size and Substitution Effects on the Structural Dimensionality of Zirconium Tellurides of the ZrSiS Type , 1995 .

[40]  New Rochelle,et al.  Magnetic Oscillations in Metals , 1984 .

[41]  Alexei Abrikosov,et al.  Fundamentals of the theory of metals , 1988 .