Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation

The first use of non-centrosymmetric Janus Au-TiO(2) photocatalysts in efficient, plasmon-enhanced visible-light hydrogen generation is demonstrated. The intense localization of plasmonic near-fields close to the Au-TiO(2) interface, coupled with optical transitions involving localized electronic states in amorphous TiO(2) brings about enhanced optical absorption and the generation of electron-hole pairs for photocatalysis.

[1]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[2]  M. Käll,et al.  Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. , 2007, Nano letters.

[3]  Bing Xu,et al.  Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. , 2005, Journal of the American Chemical Society.

[4]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[5]  Andrey L Rogach,et al.  Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles , 2010, Advanced materials.

[6]  Molly M. Miller,et al.  Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. , 2005, The journal of physical chemistry. B.

[7]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[8]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[9]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[10]  A. Alivisatos,et al.  Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. , 2011, Angewandte Chemie.

[11]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[12]  Yeon-Tae Yu,et al.  Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[14]  G. Jellison,et al.  Spectroscopic ellipsometry of thin film and bulk anatase (TiO2) , 2003 .

[15]  Shuhua Liu,et al.  Silica-coated metal nanoparticles. , 2009, Chemistry, an Asian journal.

[16]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[17]  Shuangxi Xing,et al.  Scalable Routes to Janus Au−SiO2 and Ternary Ag−Au−SiO2 Nanoparticles , 2010 .

[18]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[19]  H. Zeng,et al.  Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. , 2005, Angewandte Chemie.

[20]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[21]  A. Paul Alivisatos,et al.  Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures , 2010 .

[22]  Jianfang Wang,et al.  Shape- and size-dependent refractive index sensitivity of gold nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[23]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[24]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[25]  R. F. Howe,et al.  The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO₂ nanoparticles. , 2011, Nature chemistry.

[26]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[27]  Zanatta,et al.  Absorption edge, band tails, and disorder of amorphous semiconductors. , 1996, Physical review. B, Condensed matter.

[28]  D. Ghosh,et al.  Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. , 2009, ACS applied materials & interfaces.

[29]  H. Tan,et al.  Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect. , 2011, Journal of the American Chemical Society.

[30]  Younan Xia,et al.  Gold Nanocages for Biomedical Applications , 2007, Advanced materials.

[31]  Andrey L. Rogach,et al.  Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation , 2010 .

[32]  Andrey L Rogach,et al.  Nonspherical Noble Metal Nanoparticles: Colloid‐Chemical Synthesis and Morphology Control , 2010, Advanced materials.

[33]  U. Banin,et al.  Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. , 2011, Angewandte Chemie.

[34]  Joshua M. Pearce,et al.  Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics , 2002, Journal of Applied Physics.

[35]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[36]  H. Ramanarayan,et al.  Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. , 2011, Angewandte Chemie.

[37]  M. O’Donnell,et al.  Multifunctional nanoparticles as coupled contrast agents. , 2010, Nature communications.

[38]  Catherine J. Murphy,et al.  CONTROLLING THE ASPECT RATIO OF INORGANIC NANORODS AND NANOWIRES , 2002 .

[39]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[40]  Christina Graf,et al.  A General Method To Coat Colloidal Particles with Silica , 2003 .

[41]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[42]  H. García,et al.  Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. , 2011, Journal of the American Chemical Society.

[43]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[44]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[45]  Luis M Liz-Marzán,et al.  Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials , 2010, Advanced materials.

[46]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[47]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.