DeepMatching: Hierarchical Deformable Dense Matching

We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk (Mikolajczyk et al. A comparison of affine region detectors, 2005), the MPI-Sintel (Butler et al. A naturalistic open source movie for optical flow evaluation, 2012) and the Kitti (Geiger et al. Vision meets robotics: The KITTI dataset, 2013) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures. We also apply DeepMatching to the computation of optical flow, called DeepFlow, by integrating it in the large displacement optical flow (LDOF) approach of Brox and Malik (Large displacement optical flow: descriptor matching in variational motion estimation, 2011). Additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation.

[1]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[2]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[3]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Cordelia Schmid,et al.  DeepFlow: Large Displacement Optical Flow with Deep Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[5]  Hermann Ney,et al.  Deformation Models for Image Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Romain Dupont,et al.  A General Dense Image Matching Framework Combining Direct and Feature-Based Costs , 2013, 2013 IEEE International Conference on Computer Vision.

[7]  Andrés Bruhn,et al.  Adaptive Integration of Feature Matches into Variational Optical Flow Methods , 2012, ACCV.

[8]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[10]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Konrad Schindler,et al.  Piecewise Rigid Scene Flow , 2013, 2013 IEEE International Conference on Computer Vision.

[12]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[13]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[14]  Christian Heipke,et al.  Discrete Optimization for Optical Flow , 2015, GCPR.

[15]  Jian Sun,et al.  Computing nearest-neighbor fields via Propagation-Assisted KD-Trees , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  J. van Leeuwen,et al.  Neural Networks: Tricks of the Trade , 2002, Lecture Notes in Computer Science.

[18]  Shai Avidan,et al.  Coherency Sensitive Hashing , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Ce Liu,et al.  Deformable Spatial Pyramid Matching for Fast Dense Correspondences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[21]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Richard Szeliski,et al.  Towards Internet-scale multi-view stereo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Michael Isard,et al.  Descriptor Learning for Efficient Retrieval , 2010, ECCV.

[24]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[25]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[26]  Dani Lischinski,et al.  Non-rigid dense correspondence with applications for image enhancement , 2011, ACM Trans. Graph..

[27]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[28]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[29]  Ying Wu,et al.  Large Displacement Optical Flow from Nearest Neighbor Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Cordelia Schmid,et al.  EpicFlow: Edge-preserving interpolation of correspondences for optical flow , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Lihi Zelnik-Manor,et al.  On SIFTs and their scales , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[33]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[34]  Cristian Sminchisescu,et al.  Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation , 2013, 2013 IEEE International Conference on Computer Vision.

[35]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[36]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[37]  Konrad Schindler,et al.  An Evaluation of Data Costs for Optical Flow , 2013, GCPR.

[38]  Jiangbo Lu,et al.  DAISY Filter Flow: A Generalized Discrete Approach to Dense Correspondences , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.

[40]  Shimon Ullman,et al.  A hierarchical non-parametric method for capturing non-rigid deformations , 2009, Image Vis. Comput..

[41]  Adam Finkelstein,et al.  The Generalized PatchMatch Correspondence Algorithm , 2010, ECCV.

[42]  Didier Stricker,et al.  Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[43]  Camillo J. Taylor,et al.  Optical Flow with Geometric Occlusion Estimation and Fusion of Multiple Frames , 2015, EMMCVPR.

[44]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[45]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[46]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[47]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[48]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[50]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[51]  Luc Van Gool,et al.  Sparse Flow: Sparse Matching for Small to Large Displacement Optical Flow , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[52]  Deqing Sun,et al.  Local Layering for Joint Motion Estimation and Occlusion Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[54]  Joachim Weickert,et al.  Learning Brightness Transfer Functions for the Joint Recovery of Illumination Changes and Optical Flow , 2014, ECCV.

[55]  Serge J. Belongie,et al.  A Feature-based Approach for Dense Segmentation and Estimation of Large Disparity Motion , 2006, International Journal of Computer Vision.

[56]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  Seiichi Uchida,et al.  A monotonic and continuous two-dimensional warping based on dynamic programming , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[58]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[59]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.