Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations.
暂无分享,去创建一个
J. Pignol | G. Prévôt | R. Sabattier | N. Brassart | P. Cuendet | F. Colomb | A. Hachem | G. Farés | C. M'Bake Diop
[1] O. Harling,et al. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data. , 1996, International journal of radiation oncology, biology, physics.
[2] H. B. Liu. PbF2 compared to Al2O3 and AlF3 to produce an epithermal neutron beam for radiotherapy. , 1996, Medical physics.
[3] F. Demard,et al. Boron neutron capture irradiation: setting up a clinical programme in Nice. , 1996, Bulletin du cancer. Radiotherapie : journal de la Societe francaise du cancer : organe de la societe francaise de radiotherapie oncologique.
[4] D. Allen,et al. A design study for an accelerator-based epithermal neutron beam for BNCT. , 1995, Physics in medicine and biology.
[5] P. Chauvel,et al. Irradiations par capture de neutrons: principe, résultats actuels et perspectives , 1995 .
[6] H. B. Liu,et al. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor. , 1994, Medical physics.
[7] T. Buchholz,et al. Boron neutron capture therapy: a mechanism for achieving a concomitant tumor boost in fast neutron radiotherapy. , 1994, International journal of radiation oncology, biology, physics.
[8] T. Buchholz,et al. Enhancement of fast neutron beams with boron neutron capture therapy. A mechanism for achieving a selective, concomitant tumor boost. , 1994, Acta oncologica.
[9] E. Grusell,et al. Dose enhancement in fast neutron tumour therapy due to neutron captures in 10B. , 1994, Acta oncologica.
[10] W. Sauerwein,et al. Monte Carlo calculation of dose enhancement by neutron capture of 10B in fast neutron therapy. , 1993, Physics in medicine and biology.
[11] B. Mijnheer,et al. An investigation of the possibilities of BNCT treatment planning with the Monte Carlo method. , 1993, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].
[12] A. Soloway,et al. Boron neutron capture therapy for cancer. Realities and prospects , 1992 .
[13] F. D. Brooks,et al. Neutron fluence and kerma spectra of a p(66)/Be(40) clinical source. , 1992, Medical physics.
[14] R. Shefer,et al. Accelerator-based epithermal neutron beam design for neutron capture therapy. , 1992, Medical physics.
[15] P. Andreo. Monte Carlo techniques in medical radiation physics. , 1991, Physics in medicine and biology.
[16] W. Sauerwein,et al. Dosimetry and fluence measurements with a new irradiation arrangement for neutron capture therapy of tumours in mice. , 1991, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.
[17] G. Brownell,et al. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy. , 1991, Radiation research.
[18] E. Grusell,et al. The production by 72 MeV protons of keV neutrons for 10B neutron capture therapy. , 1989, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].
[19] H. Sack,et al. Neutron capture therapy using a fast neutron beam: clinical considerations and physical aspects. , 1989, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].
[20] C. K. Wang,et al. A neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy , 1989 .
[21] V. Bond,et al. Current status of 10B-neutron capture therapy: enhancement of tumor dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content: a theoretical evaluation. , 1985, International journal of radiation oncology, biology, physics.