暂无分享,去创建一个
[1] Le Song,et al. Tailoring density estimation via reproducing kernel moment matching , 2008, ICML '08.
[2] Alexander J. Smola,et al. Super-Samples from Kernel Herding , 2010, UAI.
[3] Aleksandar Nikolov,et al. Tighter Bounds for the Discrepancy of Boxes and Polytopes , 2017, ArXiv.
[4] A. Müller. Integral Probability Metrics and Their Generating Classes of Functions , 1997, Advances in Applied Probability.
[5] Matthias Hein,et al. Hilbertian Metrics and Positive Definite Kernels on Probability Measures , 2005, AISTATS.
[6] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[7] Paul Grigas,et al. New analysis and results for the Frank–Wolfe method , 2013, Mathematical Programming.
[8] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[9] Suresh Venkatasubramanian,et al. A Gentle Introduction to the Kernel Distance , 2011, ArXiv.
[10] Clayton Scott,et al. Sparse Approximation of a Kernel Mean , 2015, IEEE Transactions on Signal Processing.
[11] Alexander J. Smola,et al. Who Supported Obama in 2012?: Ecological Inference through Distribution Regression , 2015, KDD.
[12] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[13] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[14] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[15] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[16] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[17] Bei Wang,et al. Geometric Inference on Kernel Density Estimates , 2013, SoCG.
[18] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .
[19] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[20] A. Atiya,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.
[21] Yi Li,et al. Improved bounds on the sample complexity of learning , 2000, SODA '00.
[22] Jeff M. Phillips,et al. Є-Samples for Kernels , 2013, SODA.
[23] Samira Samadi,et al. Near-Optimal Herding , 2014, COLT.
[24] Bernhard Schölkopf,et al. A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..
[25] Yan Zheng,et al. L∞ Error and Bandwidth Selection for Kernel Density Estimates of Large Data , 2015, KDD.
[26] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[27] Nikhil Bansal,et al. Algorithmic discrepancy beyond partial coloring , 2016, STOC.
[28] Suresh Venkatasubramanian,et al. Comparing distributions and shapes using the kernel distance , 2010, SoCG '11.
[29] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[30] Martin Jaggi,et al. On the Global Linear Convergence of Frank-Wolfe Optimization Variants , 2015, NIPS.
[31] Martin Jaggi,et al. Coresets for polytope distance , 2009, SCG '09.
[32] Zaïd Harchaoui,et al. Signal Processing , 2013, 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES).
[33] Francis R. Bach,et al. On the Equivalence between Herding and Conditional Gradient Algorithms , 2012, ICML.
[34] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[35] Joan Alexis Glaunès. Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .
[36] J. Dunn. Convergence Rates for Conditional Gradient Sequences Generated by Implicit Step Length Rules , 1980 .