General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance

We demonstrate a simple, efficient, yet versatile strategy for the synthesis of novel hierarchical heterostructures composed of TiO2 nanofiber stem and various metal oxides (MOs) secondary nanostructures, including Co3O4, Fe2O3, Fe3O4, and CuO, by advantageously combining the versatility of the electrospinning technique and hydrothermal growth method, for which the controllable formation process and possible formation mechanism are also investigated. Moreover, as a proof-of-concept demonstration of the functional properties of these hierarchical heterostructures, the Co3O4/TiO2 hierarchical heterostructures are investigated as the lithium-ion batteries (LIBs) anode materials for the first time, which not only delivers a high reversible capacity of 632.5 mAh g-1 and 95.3% capacity retention over 480 cycles, but also shows excellent rate capability with respect to the pristine TiO2 nanofibers. The synergetic effect between Co3O4 and TiO2 as well as the unique feature of hierarchical heterostructures are probably responsible for the enhanced electrochemical performance.

[1]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[2]  L. Archer,et al.  A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles , 2008 .

[3]  W. Kim,et al.  Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries , 2010 .

[4]  Yen Wei,et al.  Magnetically separable iron oxide nanostructures-TiO2 nanofibers hierarchical heterostructures: controlled fabrication and photocatalytic activity , 2011 .

[5]  H. Zeng,et al.  Dimensional Control of Cobalt-hydroxide-carbonate Nanorods and Their Thermal Conversion to One-Dimensional Arrays of Co3O4 Nanoparticles , 2003 .

[6]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[7]  Lei Xu,et al.  Co3O4 Nanomaterials in Lithium‐Ion Batteries and Gas Sensors , 2005 .

[8]  Lixia Yuan,et al.  Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries , 2011 .

[9]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[10]  Wei Luo,et al.  Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. , 2011, ACS nano.

[11]  Feng Li,et al.  Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template‐Free Self‐Assembly , 2011 .

[12]  B. Dong,et al.  Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery , 2007 .

[13]  Ling Zhang,et al.  General strategy for a large-scale fabric with branched nanofiber-nanorod hierarchical heterostructure: controllable synthesis and applications. , 2010, Chemistry.

[14]  H. Xia,et al.  Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. , 2010, ACS nano.

[15]  P. Schmuki,et al.  Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis. , 2010, Journal of the American Chemical Society.

[16]  Charles P. Lin,et al.  IKKβ regulates essential functions of the vascular endothelium through kinase-dependent and -independent pathways , 2011, Nature communications.

[17]  J. Tarascon,et al.  Growth and Electrochemical Characterization versus Lithium of Fe3O4 Electrodes Made by Electrodeposition , 2006 .

[18]  Yunlong Zhao,et al.  Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. , 2010, Nano letters.

[19]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[20]  Zongping Shao,et al.  Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers† , 2011 .

[21]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[22]  Yunlong Zhao,et al.  Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. , 2011, Nature communications.

[23]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[24]  J. Moon,et al.  Hierarchically Porous TiO2 Electrodes Fabricated by Dual Templating Methods for Dye‐Sensitized Solar Cells , 2011, Advanced materials.

[25]  X. Lou,et al.  Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum‐like Co(CO3)0.5(OH)·0.11H2O and Their Lithium‐Storage Properties , 2012 .

[26]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[27]  Yuan Hu,et al.  Magnetically Separable Fe3O4/TiO2 Hollow Spheres: Fabrication and Photocatalytic Activity , 2009 .

[28]  Jian Jiang,et al.  Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes , 2010 .

[29]  X. Lou,et al.  Sandwich‐Like, Stacked Ultrathin Titanate Nanosheets for Ultrafast Lithium Storage , 2011, Advanced materials.

[30]  Y. Y. Li,et al.  General Synthesis of Large-Scale Arrays of One-Dimensional Nanostructured Co3O4 Directly on Heterogeneous Substrates , 2010 .

[31]  G. Cui,et al.  One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage , 2011 .

[32]  N. Nakashima,et al.  A Mesoporous Nanocomposite of TiO2 and Carbon Nanotubes as a High‐Rate Li‐Intercalation Electrode Material , 2006 .

[33]  K. Amine,et al.  Nanostructured TiO2 and Its Application in Lithium‐Ion Storage , 2011 .

[34]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[35]  Klaus Müllen,et al.  Porous Iron Oxide Ribbons Grown on Graphene for High-Performance Lithium Storage , 2012, Scientific Reports.

[36]  Y. Lan,et al.  Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. , 2005, Journal of the American Chemical Society.

[37]  D. Wexler,et al.  Amorphous Carbon Coated High Grain Boundary Density Dual Phase Li4Ti5O12‐TiO2: A Nanocomposite Anode Material for Li‐Ion Batteries , 2011 .

[38]  S. Kim,et al.  Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. , 2009, ACS nano.

[39]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[40]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[41]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[42]  H. Hng,et al.  Epitaxial Growth of Branched α‐Fe2O3/SnO2 Nano‐Heterostructures with Improved Lithium‐Ion Battery Performance , 2011 .

[43]  L. Nazar,et al.  Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries , 2011 .

[44]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[45]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[46]  K. Müllen,et al.  Sandwich‐Like, Graphene‐Based Titania Nanosheets with High Surface Area for Fast Lithium Storage , 2011, Advanced materials.

[47]  Pooi See Lee,et al.  V2O5 Loaded on SnO2 Nanowires for High‐Rate Li Ion Batteries , 2011, Advanced materials.