Fluidized bed synthesis of carbon nanotubes – A review

[1]  B. Hong,et al.  Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition , 2011, Nanotechnology.

[2]  N. Popovska,et al.  Catalytic growth of carbon nanotubes on zeolite supported iron, ruthenium and iron/ruthenium nanoparticles by chemical vapor deposition in a fluidized bed reactor , 2011 .

[3]  A. Fakhru’l-Razi,et al.  Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes , 2011 .

[4]  S. Banerjee,et al.  Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique. , 2010, Journal of nanoscience and nanotechnology.

[5]  Andrew T. Harris,et al.  An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds , 2010 .

[6]  Krishnaswamy Nandakumar,et al.  Direct numerical simulations of a freely falling sphere using fictitious domain method: Breaking of axisymmetric wake , 2010 .

[7]  Shi Jin,et al.  Direct numerical simulation of free falling sphere in creeping flow , 2010 .

[8]  Jam Hans Kuipers,et al.  DNS of gas bubbles behaviour using an improved 3D front tracking model—Model development , 2010 .

[9]  Jam Hans Kuipers,et al.  Numerical and experimental investigation of the lift force on single bubbles , 2010 .

[10]  Firoozeh Danafar,et al.  Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-a review , 2009 .

[11]  A. Fakhru’l-Razi,et al.  An Innovative Procedure for Large‐scale Synthesis of Carbon Nanotubes by Fluidized Bed Catalytic Vapor Deposition Technique , 2009 .

[12]  V. Varadan,et al.  Process synthesis and optimization for the production of carbon nanostructures , 2009, Nanotechnology.

[13]  Jiaqi Huang,et al.  Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition , 2009 .

[14]  J. Joshi,et al.  CFD modeling of solid–liquid fluidized beds of mono and binary particle mixtures , 2009 .

[15]  Paul W. Cleary,et al.  Prediction of screw conveyor performance using the Discrete Element Method (DEM) , 2009 .

[16]  Mandar Tabib,et al.  Dynamics of Flow Structures and Transport Phenomena, 1. Experimental and Numerical Techniques for Identification and Energy Content of Flow Structures , 2009 .

[17]  Mandar Tabib,et al.  Dynamics of Flow Structures and Transport Phenomena, 2. Relationship with Design Objectives and Design Optimization , 2009 .

[18]  Qi-xin Liu,et al.  Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol , 2009 .

[19]  C. Hsieh,et al.  Parameter setting on growth of carbon nanotubes over transition metal/alumina catalysts in a fluidized bed reactor , 2009 .

[20]  A. Falqui,et al.  An original growth mode of MWCNTs on alumina supported iron catalysts , 2009 .

[21]  C. Hsieh,et al.  Synthesis of carbon nanotubes over Ni- and Co-supported CaCO3 catalysts using catalytic chemical vapor deposition , 2009 .

[22]  P. Serp,et al.  Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition , 2009 .

[23]  M. Pinar Mengüç,et al.  Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method , 2009 .

[24]  O. Kuznetsov,et al.  Thermodynamics behind carbon nanotube growth via endothermic catalytic decomposition reaction. , 2009, ACS nano.

[25]  Qiang Zhang,et al.  Synthesis of High‐Quality, Double‐Walled Carbon Nanotubes in a Fluidized Bed Reactor , 2009 .

[26]  Bhaskar D. Kulkarni,et al.  Identification and characterization of flow structures in chemical process equipment using multiresolution techniques , 2008 .

[27]  A. Harris,et al.  Process Parameter Interaction Effects during Carbon Nanotube Synthesis in Fluidized Beds , 2008 .

[28]  Hui Sun,et al.  Preparation of large particle MCM-41 and investigation on its fluidization behavior and application in single-walled carbon nanotube production in a fluidized-bed reactor , 2008 .

[29]  Mandar Tabib,et al.  Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decomposition technique , 2008 .

[30]  Mandar Tabib,et al.  CFD simulation of bubble column—An analysis of interphase forces and turbulence models , 2008 .

[31]  Aibing Yu,et al.  A CFD–DEM study of the cluster behavior in riser and downer reactors , 2008 .

[32]  J. Joshi,et al.  CFD modeling of pressure drop and drag coefficient in fixed and expanded beds , 2008 .

[33]  A T Harris,et al.  Towards the large-scale synthesis of carbon nanotubes in fluidised beds. , 2008, Journal of nanoscience and nanotechnology.

[34]  Minghui Huang,et al.  Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers , 2008 .

[35]  Doraiswami Ramkrishna,et al.  CFD simulation of bubble columns incorporating population balance modeling , 2008 .

[36]  Qiang Zhang,et al.  The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis , 2008 .

[37]  Donghyun Lee,et al.  High-quality multiwalled carbon nanotubes from catalytic decomposition of carboneous materials in gas-solid fluidized beds , 2008 .

[38]  D. Sathiyamoorthy,et al.  Novel catalytic route to bulk production of high purity carbon nanotube , 2008 .

[39]  Qiang Zhang,et al.  Progress on aligned carbon nanotube arrays , 2007 .

[40]  N. Shah,et al.  Semi-continuous hydrogen production from catalytic methane decomposition using a fluidized-bed reactor , 2007 .

[41]  P. Serp,et al.  Catalytic Production of Carbon Nanotubes by Fluidized‐Bed CVD , 2007 .

[42]  D. Sathiyamoorthy,et al.  The production of high purity carbon nanotubes with high yield using cobalt formate catalyst on carbon black , 2007 .

[43]  F. Wei,et al.  Encapsulation, Compensation, and Substitution of Catalyst Particles during Continuous Growth of Carbon Nanotubes , 2007, 0707.2759.

[44]  Martin Rhodes,et al.  Nanoparticle fluidization and Geldart's classification , 2007 .

[45]  P. Serp,et al.  Catalytic Routes Towards Single Wall Carbon Nanotubes , 2007 .

[46]  L. A. Montoro,et al.  A comparative study of alcohols and ketones as carbon precursor for multi-walled carbon nanotube growth , 2007 .

[47]  Jyeshtharaj B. Joshi,et al.  Insight into Theories of Heat and Mass Transfer at the Solid-Fluid Interface Using Direct Numerical Simulation and Large Eddy Simulation , 2007 .

[48]  A. Harutyunyan,et al.  Continuous production of single-walled carbon nanotubes using a supported floating catalyst , 2007 .

[49]  P. Serp,et al.  A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition , 2007 .

[50]  B. Ganjipour,et al.  Morphology optimization of CCVD-synthesized multiwall carbon nanotubes, using statistical design of experiments , 2007 .

[51]  Lianxi Zheng,et al.  Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. , 2007, Small.

[52]  P. Harris Solid state growth mechanisms for carbon nanotubes , 2007 .

[53]  Andrew T. Harris,et al.  A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition , 2007 .

[54]  Fei Wei,et al.  Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed , 2006 .

[55]  James M Tour,et al.  Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. , 2006, Journal of the American Chemical Society.

[56]  E. Mahdi,et al.  EFFECT OF REACTION TEMPERATURE ON THE PRODUCTION OF CARBON NANOTUBES , 2006 .

[57]  Gong Zhang,et al.  Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes , 2006 .

[58]  F. Wei,et al.  Growth of branch carbon nanotubes on carbon nanotubes as support , 2006 .

[59]  H. Zhang,et al.  A possible mechanism of uncatalyzed growth of carbon nanotubes , 2006 .

[60]  Julio Soria,et al.  Laser-based planar imaging of nano-particle fluidization: Part I—determination of aggregate size and shape , 2006 .

[61]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[62]  F. Wei,et al.  Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites , 2006 .

[63]  X. Liao,et al.  Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition , 2006 .

[64]  Jai Kant Pandit,et al.  On Geldart Group A behaviour in fluidized beds with and without cohesive interparticle forces: A DEM study , 2006 .

[65]  Fei Wei,et al.  Microstructure of carbon nanotubes/PET conductive composites fibers and their properties , 2006 .

[66]  Qi-xin Liu,et al.  New technique of synthesizing single-walled carbon nanotubes from ethanol using fluidized-bed over Fe-Mo/MgO catalyst. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[67]  M. Mastellone,et al.  An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins , 2006 .

[68]  J. Nagy,et al.  Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes , 2006 .

[69]  D. Resasco,et al.  Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. , 2006, The journal of physical chemistry. B.

[70]  Alan W. Weimer,et al.  Aggregation behavior of nanoparticles in fluidized beds , 2005 .

[71]  K. Philippot,et al.  Production of supported asymmetric catalysts in a fluidised bed , 2005 .

[72]  Fei Wei,et al.  Fabrication and characterization of multi-walled carbon nanotubes-based ink , 2005 .

[73]  K. Kuwana,et al.  Modeling CVD synthesis of carbon nanotubes: Nanoparticle formation from ferrocene , 2005 .

[74]  Z. Ren,et al.  Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition , 2005 .

[75]  C. Berger,et al.  Liquid Carbon, Carbon-Glass Beads, and the Crystallization of Carbon Nanotubes , 2005, Science.

[76]  Chao Zhu,et al.  Gas fluidization characteristics of nanoparticle agglomerates , 2005 .

[77]  K. Hata,et al.  Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates. , 2005, The journal of physical chemistry. B.

[78]  Jeunghee Park,et al.  Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene , 2005 .

[79]  Yoshinori Ando,et al.  Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support , 2005 .

[80]  E. Grulke,et al.  Catalyst deactivation in CVD synthesis of carbon nanotubes , 2005 .

[81]  C. Xu,et al.  One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis , 2004 .

[82]  H. Nakashima,et al.  CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst , 2004 .

[83]  A. Fonseca,et al.  A comparison of different preparation methods of Fe/Mo/Al2O3 sol–gel catalyst for synthesis of single wall carbon nanotubes , 2004 .

[84]  A. Guerrero-Ruíz,et al.  Growing mechanism of CNTs: a kinetic approach , 2004 .

[85]  Kozo Saito,et al.  CFD prediction of carbon nanotube production rate in a CVD reactor , 2004 .

[86]  P. Nikolaev Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process. , 2004, Journal of nanoscience and nanotechnology.

[87]  Manhong Liu,et al.  Bimetallic Catalysts for the Efficient Growth of SWNTs on Surfaces , 2004 .

[88]  F. Wei,et al.  Enhanced production of carbon nanotubes: combination of catalyst reduction and methane decomposition , 2004 .

[89]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[90]  I. Kinloch,et al.  Synthesis of single-walled carbon nanotubes by a fluidized-bed method , 2004 .

[91]  Hao Yan,et al.  Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition , 2004 .

[92]  Y. Shibuta,et al.  Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method , 2003 .

[93]  Yoshinori Ando,et al.  Single-wall and multi-wall carbon nanotubes from camphor—a botanical hydrocarbon , 2003 .

[94]  P. Serp,et al.  Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process , 2003 .

[95]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[96]  S. Maruyama,et al.  Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol , 2003 .

[97]  S. Yu,et al.  Comparison of source gases and catalyst metals for growth of carbon nanotube , 2003 .

[98]  Luigi Occhipinti,et al.  Growth mechanisms in chemical vapour deposited carbon nanotubes , 2003 .

[99]  A. Guerrero-Ruíz,et al.  Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor , 2003 .

[100]  A. Züttel,et al.  Fluidised-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO , 2003 .

[101]  Qian Weizhong,et al.  Production of carbon nanotubes in a packed bed and a fluidized bed , 2003 .

[102]  F. Wei,et al.  The evaluation of the gross defects of carbon nanotubes in a continuous CVD process , 2003 .

[103]  Qian Weizhong,et al.  Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism , 2003 .

[104]  J. Pinheiro,et al.  Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts: I. Growth versus catalyst state , 2003 .

[105]  F. Wei,et al.  Synthesis of carbon nanotubes from liquefied petroleum gas containing sulfur , 2002 .

[106]  H. Baik,et al.  Growth control of single and multi-walled carbon nanotubes by thin film catalyst , 2002 .

[107]  R. Andrews,et al.  Multiwall carbon nanotubes: synthesis and application. , 2002, Accounts of chemical research.

[108]  F. Wei,et al.  The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor , 2002 .

[109]  Y. Aoyagi,et al.  Carbon nanotube devices for nanoelectronics , 2002 .

[110]  R. Krumlauf,et al.  Riding the Crest of the Wnt Signaling Wave , 2002, Science.

[111]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[112]  Jyeshtharaj B. Joshi,et al.  Coherent flow structures in bubble column reactors , 2002 .

[113]  Jean-Christophe Charlier,et al.  Microscopic mechanisms for the catalyst assisted growth of single-wall carbon nanotubes , 2002 .

[114]  P. Serp,et al.  Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor , 2002 .

[115]  Jeunghee Park,et al.  Temperature-Dependent Growth of Vertically Aligned Carbon Nanotubes in the Range 800−1100 °C , 2002 .

[116]  Masamichi Kohno,et al.  Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol , 2002 .

[117]  Wenzhi Li,et al.  Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors , 2002 .

[118]  Wei Fei,et al.  Fluidization and agglomerate structure of SiO2 nanoparticles , 2002 .

[119]  H. Dai,et al.  Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles , 2002 .

[120]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[121]  A. Züttel,et al.  Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources , 2002 .

[122]  F. Ducastelle,et al.  Root-growth mechanism for single-wall carbon nanotubes. , 2001, Physical review letters.

[123]  Weiya Zhou,et al.  Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts , 2001 .

[124]  Jyeshtharaj B. Joshi,et al.  Computational flow modelling and design of bubble column reactors , 2001 .

[125]  H. Dai,et al.  Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes , 2001 .

[126]  A. J. Forsyth,et al.  Use of a magnetic fluidized bed in studying Geldart Group B to A transition , 2001 .

[127]  M. A. Ermakova,et al.  Decomposition of Methane over Iron Catalysts at the Range of Moderate Temperatures: The Influence of Structure of the Catalytic Systems and the Reaction Conditions on the Yield of Carbon and Morphology of Carbon Filaments , 2001 .

[128]  G. Flamant,et al.  Growth mechanisms and diameter evolution of single wall carbon nanotubes , 2001 .

[129]  Thomas Stöckli,et al.  Field emission from carbon nanotubes: the first five years , 2001 .

[130]  D. Resasco,et al.  Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO , 2001 .

[131]  S. H. Tang,et al.  A study on carbon nanotubes prepared from catalytic decomposition of C2H2 or CH4 over the pre-reduced LaCoO3 perovskite precursor , 2001 .

[132]  M. Rhodes,et al.  Prediction of fluidized bed behaviour in the presence of liquid bridges , 2001 .

[133]  L. G. Gibilaro Fluidization-dynamics : the formulation and applications of a predictive theory for the fluidized state , 2001 .

[134]  Ji Liang,et al.  An effective way to lower catalyst content in well-aligned carbon nanotube films , 2001 .

[135]  Jyeshtharaj B. Joshi,et al.  Hydrodynamic stability of multiphase reactors , 2001 .

[136]  Abel Rousset,et al.  High specific surface area carbon nanotubes from catalytic chemical vapor deposition process , 2000 .

[137]  R. L. Wal,et al.  Diffusion flame synthesis of single-walled carbon nanotubes , 2000 .

[138]  J. Nagy,et al.  Production of nanotubes by the catalytic decomposition of different carbon-containing compounds , 2000 .

[139]  Ming Su,et al.  A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity , 2000 .

[140]  Daniel E. Resasco,et al.  Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts , 2000 .

[141]  J. Nagy,et al.  Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons , 2000 .

[142]  Janos B. Nagy,et al.  Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method , 2000 .

[143]  Elizabeth C. Dickey,et al.  Model of carbon nanotube growth through chemical vapor deposition , 1999 .

[144]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[145]  F. Illas,et al.  Electronic Effects in the Activation of Supported Metal Clusters: Density Functional Theory Study of H2 Dissociation on Cu/SiO2 , 1999 .

[146]  A. Rousset,et al.  An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg_1−xM_xAl_2O_4 spinel catalysts , 1999 .

[147]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[148]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[149]  Zhengwei Pan,et al.  Direct growth of aligned open carbon nanotubes by chemical vapor deposition , 1999 .

[150]  Antonio Ramos,et al.  The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity , 1998 .

[151]  M. Dresselhaus,et al.  Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons , 1998 .

[152]  Aniruddha B. Pandit,et al.  PRESSURE DROP IN FIXED, EXPANDED AND FLUIDIZED BEDS, PACKED COLUMNS AND STATIC MIXERS - A UNIFIED APPROACH , 1998 .

[153]  P. Bernier,et al.  Carbon nanotubes: The solar approach , 1998 .

[154]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[155]  Aibing Yu,et al.  Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics , 1997 .

[156]  G. Froment,et al.  Filamentous carbon formation and gasification: Thermodynamics, driving force, nucleation, and steady-state growth , 1997 .

[157]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[158]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[159]  Ping Chen,et al.  Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a NiMgO catalyst , 1997 .

[160]  R. M. Lambert,et al.  Chemisorption and reactivity on supported clusters and thin films : towards an understanding of microscopic processes in catalysis , 1997 .

[161]  Peter Beighton,et al.  de la Chapelle, A. , 1997 .

[162]  J. Nagy,et al.  Catalytic synthesis of carbon nanotubes using zeolite support , 1996 .

[163]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[164]  J. Nagy,et al.  Optimization of catalytic production and purification of buckytubes , 1996 .

[165]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[166]  Liang-Shih Fan,et al.  Effects of particle arrangements on the drag force of a particle in the intermediate flow regime , 1996 .

[167]  J. Nagy,et al.  Fe-catalyzed carbon nanotube formation , 1996 .

[168]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[169]  Silicon deposition from silane or disilane in a fluidized bed—Part I: Experimental study , 1995 .

[170]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[171]  T. Ebbesen,et al.  Mechanism of carbon nanotube formation in the arc discharge. , 1995, Physical review. B, Condensed matter.

[172]  P. A. Langston,et al.  Discrete element simulation of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interactions , 1995 .

[173]  X. B. Zhang,et al.  The study of carbon nanotubules produced by catalytic method , 1994 .

[174]  M. Crisfield,et al.  A co‐rotational element/time‐integration strategy for non‐linear dynamics , 1994 .

[175]  Grant P. Steven,et al.  Instability, chaos, and growth and decay of energy of time‐stepping schemes for non‐linear dynamic equations , 1994 .

[176]  R. D. Felice,et al.  The voidage function for fluid-particle interaction systems , 1994 .

[177]  Malcolm L. H. Green,et al.  High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation , 1994 .

[178]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[179]  Otis R. Walton,et al.  Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres , 1993 .

[180]  R. Anderson,et al.  Grain scale simulations of loose sedimentary beds: the example of grain-bed impacts in aeolian saltation , 1993 .

[181]  Arun Shukla,et al.  Contact law effects on wave propagation in particulate materials using distinct element modeling , 1993 .

[182]  O. Levenspiel,et al.  Vibrating beds of fine particles: Estimation of interparticle forces from expansion and pressure drop experiments , 1992 .

[183]  Ian Stewart,et al.  Warning — handle with care! , 1992, Nature.

[184]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[185]  Colin Thornton,et al.  Impact of elastic spheres with and without adhesion , 1991 .

[186]  V. Ranade,et al.  Sparged loop reactors , 1990 .

[187]  R. Baker,et al.  Catalytic growth of carbon filaments , 1989 .

[188]  P. N. Rowe,et al.  A Convenient Empirical Equation for Estimation of the Richardson-Zaki Exponent , 1987 .

[189]  Jamal Chaouki,et al.  Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels , 1985 .

[190]  Roland Clift,et al.  The effect of thin liquid layers on fluidisation characteristics , 1984 .

[191]  O. Molerus,et al.  Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces , 1982 .

[192]  A. Oberlin,et al.  Crystallographic orientations of catalytic particles in filamentous carbon; Case of simple conical particles , 1981 .

[193]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[194]  Thomas J. R. Hughes,et al.  FINITE-ELEMENT METHODS FOR NONLINEAR ELASTODYNAMICS WHICH CONSERVE ENERGY. , 1978 .

[195]  Jyeshtharaj B. Joshi,et al.  Liquid phase backmixing in sparged contactors , 1978 .

[196]  Jyeshtharaj B. Joshi,et al.  Mass transfer characteristics of horizontal agitated contactors , 1976 .

[197]  Thomas J. R. Hughes,et al.  Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics , 1976 .

[198]  O. Molerus,et al.  Theory of yield of cohesive powders , 1975 .

[199]  R. J. Waite,et al.  Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene , 1973 .

[200]  D. Geldart Types of gas fluidization , 1973 .

[201]  J. Visser On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants , 1972 .

[202]  K. Kato,et al.  Bubble assemblage model for fluidized bed catalytic reactors , 1969 .

[203]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .