Economic evaluation of the industrial solar production of lime

Abstract The use of concentrated solar energy in place of fossil fuels for driving the endothermic calcination reaction CaCO3 → CaO + CO2 at above 1300 K has the potential of reducing CO2 emissions by 20% in a state-of-the-art lime plant and up to 40% in a conventional cement plant. An economic assessment for an industrial solar calcination plant with 25 MWth solar input indicates that the cost of solar produced lime ranges between 128 and 157 $/t, about twice the current selling price of conventional lime. The solar production of high purity lime for special sectors in the chemical and pharmaceutical industry might be competitive with conventional fossil fuel based calcination processes at current fuel prices.

[1]  Manuel Romero,et al.  An Update on Solar Central Receiver Systems, Projects, and Technologies , 2002 .

[2]  Robert S. Boynton Chemistry and Technology of Lime and Limestone , 1966 .

[3]  N. Khraishi,et al.  Thermal decomposition of limestone and gypsum by solar energy , 1988 .

[4]  Akiba Segal,et al.  COMPARATIVE PERFORMANCES OF `TOWER-TOP' AND `TOWER-REFLECTOR' CENTRAL SOLAR RECEIVERS , 1999 .

[5]  J. Oates,et al.  Lime and Limestone: Chemistry and Technology, Production and Uses , 1998 .

[6]  Ari Rabl,et al.  Tower reflector for solar power plant , 1976 .

[7]  C. Winter,et al.  Solar Power Plants , 1991 .

[8]  F. Trieb,et al.  Assessment of Solar Electricity Potentials in North Africa Based on Satellite Data and a Geographic Information System , 2001 .

[9]  H.William Prengle,et al.  Optical and thermal analysis of a cassegrainian solar concentrator , 1979 .

[10]  Abraham Kribus,et al.  A solar-driven combined cycle power plant , 1998 .

[11]  Wojciech Lipiński,et al.  Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime , 2004 .

[12]  Greg P. Smestad,et al.  High collection non-imaging optics: by W.T. Welford and R. Winston (Academic Press, San Diego, 1989). ISBN 0-12-742885-2; 220 pages; price US$ 54 , 1990 .

[13]  Roland Winston,et al.  High Collection Nonimaging Optics , 1989, Other Conferences.

[14]  W. Spirkl,et al.  Performance limits of heliostat fields , 1998 .

[15]  H Herzog,et al.  Capturing greenhouse gases. , 2000, Scientific American.

[16]  Aldo Steinfeld,et al.  Experimental investigation of an atmospheric-open cyclone solar reactor for solid-gas thermochemical reactions , 1992 .

[17]  Gilles Flamant,et al.  Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3 , 1980 .

[18]  Aldo Steinfeld,et al.  A new high-flux solar furnace for high-temperature thermochemical research , 1999 .

[19]  Wojciech Lipiński,et al.  Multitube Rotary Kiln for the Industrial Solar Production of Lime , 2005 .

[20]  Valerio Fernández,et al.  DESIGN AND IMPLEMENTATION PLAN OF A 10 MW SOLAR TOWER POWER PLANT BASED ON VOLUMETRIC-AIR TECHNOLOGY IN SEVILLE (SPAIN) , 2000 .

[21]  Abraham Kribus,et al.  Solar tower reflector systems : A new approach for high-temperature solar plants , 1998 .

[22]  Abraham Kribus,et al.  EXTENSION OF THE HERMITE EXPANSION METHOD FOR CASSEGRAINIAN SOLAR CENTRAL RECEIVER SYSTEMS , 1998 .

[23]  G. Flamant,et al.  52 Decarbonation of calcite and phosphate rock in solar chemical reactors. , 1980 .

[24]  Abraham Kribus,et al.  Optical fibers and solar power generation , 2000 .