Hybrid spectral-particle method for the turbulent transport of a passive scalar

This paper describes a novel hybrid method, combining a spectral and a particle method, to simulate the turbulent transport of a passive scalar. The method is studied from the point of view of accuracy and numerical cost. It leads to a significative speed up over more conventional grid-based methods and allows to address challenging Schmidt numbers. In particular, theoretical predictions of universal scaling in forced homogeneous turbulence are recovered for a wide range of Schmidt numbers for large, intermediate and small scales of the scalar.

[1]  E. Koschmieder Taylor vortices between eccentric cylinders , 1976 .

[2]  G. Cottet,et al.  Particle method: an efficient tool for direct numerical simulations of a high Schmidt number passive scalar in turbulent flow , 2012 .

[3]  Philippe Poncet,et al.  Topological aspects of three-dimensional wakes behind rotary oscillating cylinders , 2004, Journal of Fluid Mechanics.

[4]  Georges-Henri Cottet,et al.  Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods , 2004 .

[5]  S. Corrsin On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[6]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[7]  Heinz Pitsch,et al.  Large-Eddy Simulation of Turbulent Reacting Flows , 2008 .

[8]  Toshiyuki Gotoh,et al.  Spectral compact difference hybrid computation of passive scalar in isotropic turbulence , 2012, J. Comput. Phys..

[9]  Diego Donzis,et al.  The Batchelor Spectrum for Mixing of Passive Scalars in Isotropic Turbulence , 2010 .

[10]  Jose C. F. Pereira,et al.  Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations , 2007 .

[11]  Georges-Henri Cottet,et al.  Subgrid particle resolution for the turbulent transport of a passive scalar , 2009 .

[12]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[13]  M. Chertkov,et al.  INTERMITTENT DISSIPATION OF A PASSIVE SCALAR IN TURBULENCE , 1998 .

[14]  K. Alvelius,et al.  RANDOM FORCING OF THREE-DIMENSIONAL HOMOGENEOUS TURBULENCE , 1999 .

[15]  J. Andrzej Domaradzki,et al.  Direct numerical simulations of passive scalars with Pr>1 advected by turbulent flow , 1997, Journal of Fluid Mechanics.

[16]  Diego Rossinelli,et al.  GPU and APU computations of Finite Time Lyapunov Exponent fields , 2012, J. Comput. Phys..

[17]  Georges-Henri Cottet,et al.  Vortex Methods: Viscous Vortex Methods , 2000 .

[18]  F. Chow,et al.  High-Resolution Large-Eddy Simulations of Scalar Transport in Atmospheric Boundary Layer Flow over Complex Terrain , 2008 .

[19]  Diego Donzis,et al.  Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence , 2010 .

[20]  Katepalli R. Sreenivasan,et al.  Schmidt number effects on turbulent transport with uniform mean scalar gradient , 2002 .

[21]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[22]  P. Koumoutsakos,et al.  Vortex tube reconnection at Re = 104 , 2012 .

[23]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[24]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[25]  Christophe Picard,et al.  HIGH ORDER SEMI-LAGRANGIAN PARTICLE METHODS FOR TRANSPORT EQUATIONS: NUMERICAL ANALYSIS AND IMPLEMENTATION ISSUES , 2014 .

[26]  Robert H. Kraichnan,et al.  Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .

[27]  Michael Bergdorf,et al.  A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..

[28]  D. Kassoy,et al.  Three-dimensional natural convection motion in a confined porous medium , 1978 .

[29]  Georges-Henri Cottet,et al.  Accurate, non-oscillatory, remeshing schemes for particle methods , 2012, J. Comput. Phys..

[30]  P. Koumoutsakos,et al.  A Lagrangian particle level set method. , 2005 .

[31]  Georges-Henri Cottet,et al.  A comparison of spectral and vortex methods in three-dimensional incompressible flows , 2002 .

[32]  A. Obukhov,et al.  Structure of Temperature Field in Turbulent Flow , 1970 .

[33]  E.M.J. Komen,et al.  Large-Eddy Simulation study of turbulent mixing in a T-junction , 2010 .

[34]  G. Batchelor Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity , 1959, Journal of Fluid Mechanics.

[35]  R. Antonia,et al.  Spectrum of a passive scalar in moderate Reynolds number homogeneous isotropic turbulence , 2009 .

[36]  J. A. Domaradzki,et al.  Experimental Evidence of the Kraichnan Scalar Spectrum at High Reynolds Numbers , 2012 .

[37]  Radhakrishna Sureshkumar,et al.  Viscoelastic effects on the stability of wall-bounded shear flows , 2002 .

[38]  R. Antonia,et al.  Scaling range of velocity and passive scalar spectra in grid turbulence , 2012 .