Neoarchean arc‐back arc subduction system in the Indian Peninsula: Evidence from mafic magmatism in the Shimoga greenstone belt, western Dharwar Craton

The Neoarchean Shimoga greenstone belt (SGB) of western Dharwar Craton is dominated by ultramafic‐mafic‐felsic magmatic suite and sedimentary rocks. Here, we investigate the mineral chemistry and whole‐rock geochemistry of the Koppa–Herambapura mafic magmatic rocks (tholeiitic metagabbro and metabasalt) from the southern SGB in order to understand their petrogenesis and geodynamic implication. The geochemical features classify the Shimoga rocks as basaltic‐basaltic andesite with a sub‐alkaline tholeiitic signature. Both the rock types display uniform depletion in HFSE relative to LILE‐LREE, higher LILE/HFSE, and LREE/HFSE ratios (La/Nb = 1.30–8.07, Nb/Ta = 11.58–16.19, Zr/Sm = 10.24–29.77) and negative Nb–Ta, Zr–Hf, and Ti anomalies in multi‐element patterns, corresponding to magmatic arc rocks generated within intraoceanic subduction environment. Their Nb/Th (2–15), Zr/Sm (10–29), and Zr/Hf (44–233) ratios indicate a depleted to enriched mantle source, and the parental magma of the mafic rock suite was generated by low to medium degrees (~8–30%) of mantle melting at depths corresponding to spinel to garnet peridotite fields of arc‐back arc setting. Our field and analytical data suggest that the tholeiitic metagabbros were derived from depleted mantle source generated in an arc environment, whereas the metabasalts had a mantle source attributed to (a) development of juvenile back‐arc rift; (b) upwelling of MORB‐like mantle; and (c) flux‐induced melting in the compositional domain of spinel‐garnet peridotite. Based on these results, we conclude that the mafic rock suite from the southern SGB possibly marks one of the earliest Neoarchean arc‐back arc subduction in the western Dharwar Craton.

[1]  M. Santosh,et al.  The Bastar craton, central India: A window to Archean – Paleoproterozoic crustal evolution , 2020 .

[2]  Jingyi Wang,et al.  Eoarchean to Mesoarchean crustal evolution in the Dharwar craton, India: Evidence from detrital zircon U-Pb and Hf isotopes , 2019, Gondwana Research.

[3]  Li Tang,et al.  Meso-Neoarchean magmatism and episodic crustal growth in the Kudremukh-Agumbe granite-greenstone belt, western Dharwar Craton, India , 2019, Precambrian Research.

[4]  J. K. Dash,et al.  Neoarchean magmatism in Shimoga greenstone belt, India: Evidence for subduction-accretion processes in the evolution of the western Dharwar stratigraphy , 2019, Lithos.

[5]  M. Santosh,et al.  Metamorphism during the Archean–Paleoproterozoic Transition Associated with Microblock Amalgamation in the Dharwar Craton, India , 2018, Journal of Petrology.

[6]  Haoruo Wu,et al.  Middle Neoproterozoic (ca. 760 Ma) arc and back-arc system in the North Lhasa terrane, Tibet, inferred from coeval N-MORB- and arc-type gabbros , 2018, Precambrian Research.

[7]  M. Santosh,et al.  Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India , 2018 .

[8]  J. M.,et al.  Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India , 2018, Earth-Science Reviews.

[9]  I. Nekrasov Geochemical Characteristics of Gold , 2018 .

[10]  M. Santosh,et al.  Anorthosites from an Archean continental arc in the Dharwar Craton, southern India: Implications for terrane assembly and cratonization , 2018 .

[11]  L. Loudin,et al.  New constraints on the early formation of the Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes , 2017 .

[12]  R. Bhutani,et al.  Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar craton, India: Implications for early mantle heterogeneity , 2017 .

[13]  Li Tang,et al.  Neoarchean granite-greenstone belts and related ore mineralization in the North China Craton: An overview , 2017 .

[14]  M. Santosh,et al.  Hadean Earth and primordial continents: The cradle of prebiotic life , 2017 .

[15]  A. G. Ugarkar,et al.  Geochemistry of mafic–ultramafic magmatism in the Western Ghats belt (Kudremukh greenstone belt), western Dharwar Craton, India: implications for mantle sources and geodynamic setting , 2017 .

[16]  R. Duraiswami,et al.  Physical volcanology and geochemistry of Palaeoarchaean komatiite lava flows from the western Dharwar craton, southern India: implications for Archaean mantle evolution and crustal growth , 2016 .

[17]  A. Saha,et al.  Geochemical characteristics of gold bearing boninites and banded iron formations from Shimoga greenstone belt, India: Implications for gold genesis and hydrothermal processes in diverse tectonic settings , 2016 .

[18]  C. Fanning,et al.  Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes , 2015 .

[19]  A. Saha,et al.  Neoarchean arc–juvenile back-arc magmatism in eastern Dharwar Craton, India: Geochemical fingerprints from the basalts of Kadiri greenstone belt , 2015 .

[20]  F. Yuan,et al.  Geochemical characteristics and tectonic setting of the Tuerkubantao mafic-ultramafic intrusion in West Junggar, Xinjiang, China , 2015 .

[21]  H. Furnes,et al.  Precambrian greenstone sequences represent different ophiolite types , 2015 .

[22]  A. Saha,et al.  Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin , 2014 .

[23]  A. Saha,et al.  Continental lithospheric evolution: Constraints from the geochemistry of felsic volcanic rocks in the Dharwar Craton, India , 2014 .

[24]  A. Saha,et al.  Neoarchaean felsic volcanic rocks from the Shimoga greenstone belt, Dharwar Craton, India: Geochemical fingerprints of crustal growth at an active continental margin , 2014 .

[25]  H. Furnes,et al.  Four billion years of ophiolites reveal secular trends in oceanic crust formation , 2014 .

[26]  M. Santosh,et al.  Tectonics and metallogeny of mainland Southeast Asia — A review and contribution , 2014 .

[27]  M. Deb Precambrian geodynamics and metallogeny of the Indian shield , 2014 .

[28]  J. Pearce Geochemical Fingerprinting of the Earth's Oldest Rocks , 2014 .

[29]  T. Kano,et al.  Geochronological constraints on Meso- and Neoarchean regional metamorphism and magmatism in the Dharwar craton, southern India , 2013 .

[30]  S. Dey,et al.  Neoarchaean crustal growth by combined arc–plume action: evidence from the Kadiri Greenstone Belt, eastern Dharwar craton, India , 2013 .

[31]  M. Jayananda,et al.  Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, western Dharwar craton, southern India: Implications for Mesoarchean mantle evolution and continental growth , 2013 .

[32]  S. Dey Evolution of Archaean crust in the Dharwar craton: The Nd isotope record , 2013 .

[33]  J. Paquette,et al.  The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains , 2013 .

[34]  F. Corfu,et al.  Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U-Pb zircon geochronology and Nd isotopes , 2013 .

[35]  K. Condie,et al.  Archean geodynamics: Similar to or different from modern geodynamics? , 2013 .

[36]  R. Stern,et al.  Origin of Back‐Arc Basin Magmas: Trace Element and Isotope Perspectives , 2013 .

[37]  A. Polat,et al.  Reading the Geochemical Fingerprints of Archean Hot Subduction Volcanic Rocks: Evidence for Accretion and Crustal Recycling in a Mobile Tectonic Regime , 2013 .

[38]  K. Condie,et al.  Introduction: Archean Geodynamics and Environments , 2013 .

[39]  C. Langmuir,et al.  Chemical Systematics and Hydrous Melting of the Mantle in Back‐Arc Basins , 2013 .

[40]  W. Mueller,et al.  Deciphering an Archean mantle plume: Abitibi greenstone belt, Canada , 2013 .

[41]  A. Polat,et al.  Arc picrite–potassic adakitic–shoshonitic volcanic association of the Neoarchean Sigegudda greenstone terrane, western Dharwar craton: Transition from arc wedge to lithosphere melting , 2012 .

[42]  A. Ray,et al.  Petrology, geochemistry of hornblende gabbro and associated dolerite dyke of Paharpur, Puruliya, West Bengal: Implication for petrogenetic process and tectonic setting , 2012, Journal of Earth System Science.

[43]  E. Todd,et al.  A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific , 2012 .

[44]  R. Kerrich,et al.  Eastern Dharwar Craton, India: Continental lithosphere growth by accretion of diverse plume and arc terranes , 2012 .

[45]  A. Polat Growth of Archean continental crust in oceanic island arcs , 2012 .

[46]  Dunyi Liu,et al.  The amphibolite-facies metamorphosed mafic rocks from the Maxianshan area, Qilian block, NW China: A record of early Neoproterozoic arc magmatism , 2012 .

[47]  H. Keppler,et al.  Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt , 2011 .

[48]  O. Rosen Stabilization and breakdown of Archean Cratons: Formation of sedimentary basins, mafic magmatism, and metallogenic productivity , 2011 .

[49]  J. Peucat,et al.  Lateral constrictional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux , 2011 .

[50]  S. König,et al.  Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas , 2011 .

[51]  Jennifer N. Gifford,et al.  Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey , 2010 .

[52]  D. Groves,et al.  Geochemical systematics of basalts of the Lower Basalt Unit, 2.7 Ga Kambalda Sequence, Yilgarn craton, Australia: Plume impingement at a rifted craton margin , 2010 .

[53]  Robin Gill,et al.  Igneous Rocks and Processes: A Practical Guide , 2010 .

[54]  A. Hasegawa,et al.  The dynamics of big mantle wedge, magma factory, and metamorphic–metasomatic factory in subduction zones , 2009 .

[55]  J. Bédard,et al.  Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace element discriminant diagrams , 2009 .

[56]  R. Kerrich,et al.  Geochemistry of coexisting depleted and enriched Paringa Basalts, in the 2.7 Ga Kalgoorlie Terrane, Yilgarn Craton, Western Australia: Evidence for a heterogeneous mantle plume event , 2009 .

[57]  R. Sharma Cratons and Fold Belts of India , 2009 .

[58]  M. Ramakrishnan Precambrian mafic magmatism in the Western Dharwar Craton, southern India , 2009 .

[59]  R. H. Sawkar,et al.  Mafic and ultramafic magmatism and associated mineralization in the Dharwar craton, southern India , 2009 .

[60]  M. V. Kranendonk,et al.  Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt , 2009 .

[61]  R. Kerrich,et al.  Enriched and depleted arc basalts, with Mg-andesites and adakites: A potential paired arc–back-arc of the 2.6 Ga Hutti greenstone terrane, India , 2009 .

[62]  J. Peucat,et al.  Precambrian continental strain and shear zone patterns : South Indian case - art. no. B08402 , 2008 .

[63]  T. Kano,et al.  3.35Ga komatiite volcanism in the western Dharwar craton, southern India: Constraints from Nd isotopes and whole-rock geochemistry , 2008 .

[64]  M. Jayananda,et al.  Three‐dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar craton, India) , 2008 .

[65]  S. Balakrishnan,et al.  Petrological and PGE Mineralisation Study of The Channagiri Mafic-Ultramafic Complex,shimoga Supracrustal Belt, Karnataka , 2008 .

[66]  J. Woodhead,et al.  A critical evaluation of recent models for Lau-Tonga arc-backarc basin magmatic evolution , 2007 .

[67]  C. Manikyamba,et al.  Crustal growth processes as illustrated by the Neoarchaean intraoceanic magmatism from Gadwal greenstone belt, Eastern Dharwar Craton, India , 2007 .

[68]  J. Joron,et al.  Trace element constraints on mantle sources during mid-Proterozoic magmatism: evidence for a link between the Gardar (South Greenland) and Abitibi (Canadian Shield) mafic rocks , 2007 .

[69]  H. Rollinson Early Earth Systems: A Geochemical Approach , 2007 .

[70]  Mei-Fu Zhou,et al.  Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle , 2007 .

[71]  R. Capdevila,et al.  2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints , 2006 .

[72]  J. Berndt,et al.  Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany , 2006 .

[73]  Mei-Fu Zhou,et al.  Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China: implications for sulfide segregation , 2006 .

[74]  R. Kerrich,et al.  Light rare earth element depleted to enriched basaltic flows from 2.8 to 2.7 Ga greenstone belts of the Uchi Subprovince, Ontario, Canada , 2006 .

[75]  A. Polat,et al.  Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? , 2006 .

[76]  T. Kusky,et al.  Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications for geodynamic setting and continental growth , 2005 .

[77]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[78]  A. Saunders,et al.  Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo-Triassic Siberian Traps, Russia , 2005 .

[79]  C. Manikyamba Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt, Dharwar craton , 2004 .

[80]  P. Hollings Geochemical systematics of tholeiites from the 2.86Ga Pickle Crow Assemblage, northwestern Ontario: arc basalts with positive and negative Nb–Hf anomalies , 2004 .

[81]  G. Wörner,et al.  Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas , 2004 .

[82]  J. Moyen,et al.  Late Archaean granites: a typology based on the Dharwar Craton (India) , 2003 .

[83]  A. Hofmann,et al.  Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland , 2003 .

[84]  A. Polat,et al.  Nd-isotope systematics of ~2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: evidence for shallow crustal recycling at Archean subduction zones , 2002 .

[85]  J. Foden,et al.  Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia , 2002 .

[86]  P. Choukroune,et al.  Archean granite‐greenstone tectonics at Kolar (South India): Interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion , 2002 .

[87]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[88]  G. Wörner,et al.  Sources and Fluids in the Mantle Wedge below Kamchatka, Evidence from Across-arc Geochemical Variation , 2001 .

[89]  Philip T. Broughton,et al.  Across‐arc geochemical trends in the Izu‐Bonin arc: Contributions from the subducting slab , 2001 .

[90]  O. Burnham,et al.  TRACE-ELEMENT GEOCHEMISTRY AND PETROGENESIS OF BARREN AND ORE-ASSOCIATED KOMATIITES , 2001 .

[91]  R. Thompson,et al.  Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites , 2000, Nature.

[92]  S. Edwards,et al.  Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic , 2000 .

[93]  K. Condie Episodic continental growth models: Afterthoughts and extensions , 2000 .

[94]  R. Macdonald,et al.  The Lesser Antilles volcanic chain : a study in arc magmatism. , 2000 .

[95]  J. Moyen,et al.  Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry , 2000 .

[96]  G. Hegde,et al.  The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence , 2000 .

[97]  D. Wyman,et al.  Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle , 1999 .

[98]  G. Hanson,et al.  U‐Pb Ages for Zircon and Titanite from the Ramagiri Area, Southern India: Evidence for Accretionary Origin of the Eastern Dharwar Craton during the Late Archean , 1999, The Journal of Geology.

[99]  D. Wyman,et al.  The late Archean Schreiber-Hemlo and White River-Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction-accretion complexes , 1998 .

[100]  K. Collerson,et al.  Geochemical Evolution within the Tonga–Kermadec–Lau Arc–Back-arc Systems: the Role of Varying Mantle Wedge Composition in Space and Time , 1998 .

[101]  T. Ishikawa,et al.  Source, composition and distribution of the fluid in the Kurile mantle wedge: Constraints from across-arc variations of B/Nb and B isotopes , 1997 .

[102]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[103]  D. Nelson,et al.  Further Zircon U-Pb Age Data for the Daginkatte Formation, Dharwar Supergroup, Karnataka Craton , 1997 .

[104]  J. Varekamp,et al.  U-series, SrNdPb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface , 1997 .

[105]  D. Bowyer,et al.  Niobium/Uranium Evidence for Early Formation of the Continental Crust , 1997, Science.

[106]  Anil Kumar,et al.  SmNd ages of Archaean metavolcanics of the Dharwar craton, South India , 1996 .

[107]  S. Newman,et al.  MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin , 1996 .

[108]  A. Nutman,et al.  SHRIMP U/Pb Zircon Ages of Acid Volcanic Rocks in the Chitradurga and Sandur Groups, and Granites Adjacent to the Sandur Schist Belt, Karnataka , 1996, Journal Geological Society of India.

[109]  L. Ashwal,et al.  Greenstone belts; what are they? , 1995 .

[110]  C. Friend Crustal Evolution of Singhbhum North Orissa Eastern India , 1995, Mineralogical Magazine.

[111]  C. Fanning,et al.  Age of the Holenarsipur Greenstone Belt, Relationships with the Surrounding Gneisses (Karnataka, South India) , 1995, The Journal of Geology.

[112]  W. White,et al.  Strontium, neodymium, and lead isotopic and trace-element signatures of the East indonesian sediments: provenance and implications for banda arc magma genesis , 1995 .

[113]  D. McKenzie,et al.  The Source Regions of Ocean Island Basalts , 1995 .

[114]  E. Bailey,et al.  Uranium and thorium solubilities in subduction zone fluids , 1994 .

[115]  S. Newman,et al.  The role of water in the petrogenesis of Mariana trough magmas , 1994 .

[116]  R. Johnson,et al.  Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea , 1993 .

[117]  N. Arndt,et al.  Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia , 1993 .

[118]  S. Eggins,et al.  High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge , 1993 .

[119]  F. McDermott,et al.  Trace element fractionation processes in the generation of island arc basalts , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[120]  P. Kelemen,et al.  Formation of harzburgite by pervasive melt/rock reaction in the upper mantle , 1992, Nature.

[121]  C. Dupuy,et al.  Tholeiitic volcanic rocks of the late Archean Blake River Group, southern Abitibi greenstone belt: origin and geodynamic implications , 1992 .

[122]  P. Fullagar,et al.  Lead isotopic compositions of the Western Dharwar craton, southern India: Evidence for distinct Middle Archean terranes in a Late Archean craton , 1992 .

[123]  A. Nutman,et al.  Shrimp U-Pb Ages of Detrital Zircon in Sargur Supracrustal Rocks in Western Karnataka, Southern India , 1992, Journal Geological Society of India.

[124]  A. Hofmann,et al.  Nb-Th-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution , 1991 .

[125]  G. Hegde,et al.  The Stratigraphy and Structure of the Dharwar Supergroup Adjacent to the Honnali Dome: Implications for Late Archaean Basin Development and Regional Structure in the Western Part of Karnataka , 1991 .

[126]  C. Hawkesworth,et al.  The petrogenesis of Mesozoic Gondwana low-Ti flood basalts , 1991 .

[127]  M. McCulloch,et al.  Geochemical and geodynamical constraints on subduction zone magmatism , 1991 .

[128]  E. Ito,et al.  Enriched back-arc basin basalts from the northern Mariana Trough: implications for the magmatic evolution of back-arc basins , 1990 .

[129]  R. Varne,et al.  Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia , 1990 .

[130]  J. Morris,et al.  The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics , 1990, Nature.

[131]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[132]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[133]  M. Bickle,et al.  The Volume and Composition of Melt Generated by Extension of the Lithosphere , 1988 .

[134]  R. Varne,et al.  Geochemistry of quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas , 1987 .

[135]  M. Meschede A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb1bZr1bY diagram , 1986 .

[136]  Y. Tatsumi,et al.  Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks , 1986 .

[137]  J. Murphy,et al.  Contrasting secondary mobility of Ti, P, Zr, Nb, and Y in two metabasaltic suites in the Appalachians , 1986 .

[138]  E. Bonatti,et al.  Peridotites from the Island of Zabargad (St. John), Red Sea: Petrology and geochemistry , 1986 .

[139]  M. Menzies,et al.  Mantle enrichment processes , 1984, Nature.

[140]  B. Weaver,et al.  Empirical approach to estimating the composition of the continental crust , 1984, Nature.

[141]  B. Burchfiel,et al.  The Continental Crust. , 1983 .

[142]  J. Ludden,et al.  Archean metavolcanics from the Rouyn–Noranda district, Abitibi Greenstone Belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints , 1982 .

[143]  John W. Shervais,et al.  Ti-V plots and the petrogenesis of modern and ophiolitic lavas , 1982 .

[144]  R. Maury,et al.  Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series , 1982 .

[145]  S. Taylor,et al.  Chemical characteristics of island-arc basalts: Implications for mantle sources , 1980 .

[146]  D. Green,et al.  Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeiitic basalts , 1980 .

[147]  Thomas H. Jordan,et al.  Composition and development of the continental tectosphere , 1978, Nature.

[148]  Hiroaki Sato Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation , 1977 .

[149]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[150]  B. Leake,et al.  Report. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[151]  J. Wilson,et al.  Did the Atlantic Close and then Re-Open? , 1966, Nature.

[152]  A. Saha,et al.  Major, trace and platinum group element (PGE) geochemistry of Archean Iron Ore Group and Proterozoic Malangtoli metavolcanic rocks of Singhbhum Craton, Eastern India: Inferences on mantle melting and sulphur saturation history , 2016 .

[153]  M. Santosh,et al.  An exotic Mesoarchean microcontinent: The Coorg Block, southern India , 2015 .

[154]  M. Menzies,et al.  Construction and destruction of cratons: Preface , 2013 .

[155]  Tarun C. Khanna Geochemical evidence for a paired arc – back-arc association in the Neoarchean Gadwal greenstone belt , eastern Dharwar craton , India , 2013 .

[156]  Fei Wang,et al.  Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a Young Thermal Mantle Plume close to Subduction Zones? , 2012 .

[157]  D. Wyman,et al.  Plume and arc magmatism in the Abitibi subprovince: Implications for the origin of Archean continental lithospheric mantle , 2009 .

[158]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[159]  Y. Tatsumi The subduction factory: How it operates in the evolving Earth , 2005 .

[160]  R. Larter,et al.  Magmatism in the South Sandwich arc , 2003, Geological Society, London, Special Publications.

[161]  V. Bennett Compositional Evolution of the Mantle , 2003 .

[162]  R. Kerrich,et al.  Compositional recycling structure of an Archean super-plume: Nb–Th–U–LREE systematics of Archean komatiites and basalts revisited , 2002 .

[163]  D. E. James,et al.  Formation and evolution of Archaean cratons: insights from southern Africa , 2002, Geological Society, London, Special Publications.

[164]  R. W. Le Maitre,et al.  Igneous Rocks: A Classification and Glossary of Terms , 2002 .

[165]  W. Hamilton Archean Tectonics and Magmatism , 1998 .

[166]  B. Leake,et al.  Nomenclature of the Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commision on New Minerals , 1997 .

[167]  M. Hirschmann,et al.  A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB , 1996 .

[168]  D. Peate,et al.  Tectonic Implications of the Composition of Volcanic Arc Magmas , 1995 .

[169]  I. Wright,et al.  Arc and back-arc geochemistry in the southern Kermadec arc-Ngatoro Basin and offshore Taupo Volcanic Zone, SW Pacific , 1994, Geological Society, London, Special Publications.

[170]  N. Arndt Chapter 1 Archean Komatiites , 1994 .

[171]  E. Nakamura,et al.  Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes , 1994, Nature.

[172]  K. Condie Archean crustal evolution , 1994 .

[173]  F. McDermott,et al.  Mantle and Slab Contributions in ARC Magmas , 1993 .

[174]  F. Spear Metamorphic phase equilibria and pressure-temperature-time paths , 1993 .

[175]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[176]  S. Bloomer Geochemical characteristics of boninite- and tholeiite-series volcanic rocks from the Mariana forearc and the role of an incompatible element–enriched fluid in arc petrogenesis , 1987 .

[177]  S. M. Naqvi,et al.  Precambrian geology of India , 1987 .

[178]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[179]  S. Moorbath,et al.  Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archean evolution of the Karnataka craton, southern India , 1984 .

[180]  B. Weaver,et al.  Chemical changes during dyke metamorphism in high-grade basement terrains , 1981, Nature.

[181]  S. Humphris,et al.  Trace element mobility during hydrothermal alteration of oceanic basalts , 1978 .

[182]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[183]  G. DE P. COTTER,et al.  Geology of India , 1940, Nature.